Hybrid radial basis function neural networks for urban traffic signal control
Abstract
In this study, a real-world isolated signalized intersection with a fixed-time signal control system is considered. The signal timing plans are arranged regardless of the traffic density, and these plans cause delays in vehicle queues. However, the construction of a traffic signal control system that considers the needs of the intersection will help to decrease the traffic density and increase the economic contribution by reducing waiting times and accidents. In order to increase the efficiency of the intersection, an adaptive traffic signal control system that applies signal timing plans according to changes in the traffic flow is proposed to manage the intersection. To find the appropriate adaptive green times for each lane, simulations are performed by traffic simulation software using vehicle arrivals and other information about vehicle movements gathered from the real-world intersection. Then, a hybrid radial basis function neural network is developed to forecast the adaptive green times, which is trained and tested with historical arrivals and simulation results. The performance of the proposed network is compared with well-known data mining classification methods, such as support vector regression, k-nearest neighbors, decision tree, random forest, and multilayer perceptron methods, by different evaluation parameters. The comparison results provide that the developed radial basis function neural network outperforms the other classification methods, and can be successfully used for forecasting adaptive green times as an alternative to complex unsupervised classification methods.References
Aha, D.W., Kibler, D. & Albert, M.K. 1991. Instance-based learning algorithms. Machine Learning, 6(1): 37–66. doi:10.1007/BF00153759.
Aggarwal, C. C. 2018. Radial Basis Function Networks, in: Neural Networks and Deep Learning. Springer, Yorktown Heights, NY, USA.
Akçelik, R. 2012. SIDRA Intersection user Guide. Australia.
Amin, S.M., Rodin, E.Y., Liu, A.-P., Rink, K. & Garcia-Ortiz, A. 1998. Traffic Prediction and Management via RBF Neural Nets and Semantic Control. Computer-Aided Civil and Infrastructure Engineering, 13(5):315-327. doi:10.1111/0885-9507.00110.
An, S., Lee, B.-H. & Shin, D. R. 2011. A Survey of Intelligent Transportation Systems, in: 2011 Third International Conference on Computational Intelligence, Communication Systems and Networks, 32–37. doi:10.1109/CICSyN.2011.76.
Angulo, E., Romero, F.P., García, R., Serrano-Guerrero, J. & Olivas, J.A. 2011. An adaptive approach to enhanced traffic signal optimization by using soft-computing techniques. Expert Systems with Applications, 38(3):2235–2247. doi:10.1016/J.ESWA.2010.08.011.
Araghi, S., Khosravi, A. & Creighton, D. 2015. A review on computational intelligence methods for controlling traffic signal timing. Expert Systems with Applications, 42(3):1538-1550. doi:10.1016/J.ESWA.2014.09.003.
Aslani, M., Mesgari, M.S. & Wiering, M. 2017. Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events. Transportation Research Part C: Emerging Technologies, 85: 732–752. doi:10.1016/J.TRC.2017.09.020.
Barbour, W., Martinez Mori, J.C., Kuppa, S. & Work, D.B. 2018. Prediction of arrival times of freight traffic on US railroads using support vector regression. Transportation Research Part C: Emerging Technologies, 93: 211–227. doi:10.1016/j.trc.2018.05.019.
Bazzan, A.L.C. 2009. Opportunities for multiagent systems and multiagent reinforcement learning in traffic control. Autonomous Agents and Multi-Agent Systems, 18: 342–375. doi:10.1007/s10458-008-9062-9.
Bin, Y., Zhongzhen, Y. & Baozhen, Y. 2006. Bus Arrival Time Prediction Using Support Vector Machines. Journal of Intelligent Transportation Systems, 10(4):151–158. doi:10.1080/15472450600981009.
Breiman, L. 2001. Random Forests. Machine Learning, 45(1):5-32. doi:10.1023/A:1010933404324.
Çağlar Gençosman, B. 2019. Vehicle Arrivals. Available Online:
http://dx.doi.org/10.17632/4w4ws2tsrp.2#file-e5eef725-7c1d-40b9-9399c1cfaec476bc.
Çelikoğlu, H.B. & Ciğizoğlu, H.K. 2007. Modelling public transport trips by radial basis function neural networks. Mathematical and Computer Modelling, 45(3-4): 480–489. doi:10.1016/J.MCM.2006.07.002.
Chai, T. & Draxler, R.R. 2014. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7: 1247–1250. doi:10.5194/gmd-7-1247-2014.
Chen, D. 2017. Research on Traffic Flow Prediction in the Big Data Environment Based on the Improved RBF Neural Network. IEEE Transactions on Industrial Informatics, 13(4): 2000–2008. doi:10.1109/TII.2017.2682855.
Chen, S. 1995. Nonlinear time series modelling and prediction using Gaussian RBF networks with enhanced clustering and RLS learning. Electronics Letters, 31(2): 117–118. https://doi.org/10.1049/el:19950085.
Chen, S., Billings, S.A. & Chent, S. 2007. Neural networks for nonlinear dynamic system modeling and identification. International Journal of Control, 56(2): 319-346. https://doi.org/10.1080/00207179208934317.
Gomm, J.B. & Yu, D.L. 2000. Selecting radial basis function network centers with recursive orthogonal least squares training. IEEE Transactions on Neural Networks, 11(3), 306–314. doi:10.1109/72.839002.
Grillo, F. & Laperrouze, J. 2013. Measuring the Cost of Congestion on Urban Area and the Flexible Congestion Rights. Journal of Management and Sustainability, 3(2). doi:10.5539/jms.v3n2p40.
Guo, Q., Li, L. & Ban, X. 2019. Urban traffic signal control with connected and automated vehicles: A survey. Transportation Research Part C: Emerging Technologies, 101: 313-334. doi:10.1016/J.TRC.2019.01.026.
Haj Mosa, A., Kyamakya, K., Junghans, R., Ali, M., Al Machot, F. & Gutmann, M. 2016. Soft Radial Basis Cellular Neural Network (SRB-CNN) based robust low-cost truck detection using a single presence detection sensor. Transportation Research Part C, 73: 105–127. doi:10.1016/j.trc.2016.10.016.
Han, J., Pei, J. & Kamber, M. 2012. Data Mining: Concepts and Techniques, 3rd. ed. Morgan Kaufmann Publishers, Elsevier, USA.
Haykin, S.S. 2009. Neural Networks and Learning Machines, 3rd. ed. Pearson Publishing, Upper Saddle River, NJ, USA.
Holmes, G., Hall, M. & Prank, E. 1999. Generating Rule Sets from Model Trees. Springer, Berlin, Heidelberg, 1–12. doi:10.1007/3-540-46695-9_1.
Hornik, K., Stinchcombe, M. & White, H. 1990. Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks. Neural Networks, 3: 551–560.
Hu, W., Yan, L., Liu, K. & Wang, H. 2016. A Short-term Traffic Flow Forecasting Method Based on the Hybrid PSO-SVR. Neural Processing Letters, 43(1): 155–172. doi:10.1007/s11063-015-9409-6.
Jun, M. & Ying, M. 2008. Research of Traffic Flow Forecasting Based on Neural Network, in: 2008 Second International Symposium on Intelligent Information Technology Application, 104–108. doi:10.1109/IITA.2008.207.
LA, P. & Bhatnagar, S. 2011. Reinforcement Learning With Function Approximation for Traffic Signal Control. IEEE Transactions on Intelligent Transportation Systems, 12(2): 412–421. doi: 10.1109/TITS.2010.2091408.
Li, C., Wang, M., Yang, S.-H. & Zhang, Z. 2009. Urban Traffic Signal Learning Control Using SARSA Algorithm Based on Adaptive RBF Network, in: 2009 International Conference on Measuring Technology and Mechatronics Automation, 658–661. doi:10.1109/ICMTMA.2009.445.
Liu, Z. 2007. A Survey of Intelligence Methods in Urban Traffic Signal Control, IJCSNS International Journal of Computer Science and Network Security, 7(7):105-112.
Okkan, U. & Dalkılıç, H.Y. 2012. Monthly Runoff Model for Kemer Dam with Radial Based Artificial Neural Networks. Teknik Dergi, 23(2): 5957–5966.
Öztemel, E. 2012. Yapay Sinir Ağları, third ed. Papatya Publishing, İstanbul, Turkey.
Park, B., Messer, C.J. & Urbanik, T. 1998. Short-Term Freeway Traffic Volume Forecasting Using Radial Basis Function Neural Network. Transportation Research Record: Journal of the Transportation Research Board, 1651, 39–47. doi:10.3141/1651-06.
Quinlan, J. R. 1992. Learning with Continuous Classes, in: Adams, A.; Sterling, L. (Ed.), In 5th Australian Joint Conference on Artificial Intelligence. World Scientific, Australia, 343–348. doi:10.1142/9789814536271.
Shevade, S.K., Keerthi, S.S., Bhattacharyya, C. & Murthy, K.R.K. 2000. Improvements to the SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 11(5): 1188-1193. doi:10.1109/72.870050.
Shi, Q. & Abdel-Aty, M. 2015. Big Data applications in real-time traffic operation and safety monitoring and improvement on urban expressways. Transportation Research Part C: Emerging Technologies, 58: 380–394. doi:10.1016/J.TRC.2015.02.022.
SIDRA Solutions, 2019. Available Online: http://www.sidrasolutions.com/.
Spall, J.C. & Chin, D.C. 1997. Traffic-responsive signal timing for system-wide traffic control. Transportation Research Part C: Emerging Technologies, 5(3-4): 153–163. doi:10.1016/S0968-090X(97)00012-0.
Srinivasan, D., Choy, M.C. & Cheu, R.L. 2006. Neural Networks for Real-Time Traffic Signal Control. IEEE Transactions on Intelligent Transportation Systems, 7(3): 261–272. doi:10.1109/TITS.2006.874716.
Sun, H., Liu, H.X., Xiao, H., He, R.R. & Ran, B. 2003. Use of Local Linear Regression Model for Short-Term Traffic Forecasting. Transportation Research Record: Journal of the Transportation Research Board 1836, 143–150. doi:10.3141/1836-18.
Tan, P.N., Steinbach, M. & Kumar, V. 2005. Introduction to Data Mining, first ed. Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA.
Üstün, B., Melssen, W.J. & Buydens, L.M.C. 2006. Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel. Chemometrics and Intelligent Laboratory Systems, 81(1): 29-40. doi:10.1016/J.CHEMOLAB.2005.09.003.
Vanajakshi, L. & Rilett, L.R. 2007. Support Vector Machine Technique for the Short Term Prediction of Travel Time, in: 2007 IEEE Intelligent Vehicles Symposium, 600–605. doi:10.1109/IVS.2007.4290181.
Witten, I.H., Frank, E., Hall, M.A. & Pal, C.J. 2016. Data Mining: Practical Machine Learning Tools and Techniques, 2nd. ed. Morgan Kaufmann Publishers, Elsevier, USA.
Xiao, J. & Liu, Y. 2012. Traffic Incident Detection Using Multiple-Kernel Support Vector Machine. Transportation Research Record: Journal of the Transportation Research Board, 2324(1): 44–52. doi:10.3141/2324-06.
Xie, Y. & Zhang, Y. 2006. A Wavelet Network Model for Short-Term Traffic Volume Forecasting. Journal of Intelligent Transportation Systems, 10(3): 141–150. doi:10.1080/15472450600798551.
Yang, W., Yang, D., Zhao, Y. & Gong, J. 2010. Traffic flow prediction based on wavelet transform and Radial Basis Function network, in: 2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM), 969–972. doi:10.1109/ICLSIM.2010.5461098.
Yu, C., Feng, Y., Liu, H.X., Ma, W. & Yang, X. 2018. Integrated optimization of traffic signals and vehicle trajectories at isolated urban intersections. Transportation Research Part B: Methodological, 112: 89–112. doi:10.1016/J.TRB.2018.04.007.
Zhang, J., Wang, F.-Y., Wang, K., Lin, W.-H., Xu, X. & Chen, C. 2011. Data-Driven Intelligent Transportation Systems: A Survey. IEEE Transactions on Intelligent Transportation Systems, 12(4): 1624–1639. doi:10.1109/TITS.2011.2158001.
Zhenyu S., Danna Z. & Xia, Y. 2013. Urban road traffic speed estimation for missing probe vehicle data based on multiple linear regression model, in: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 118–123. doi:10.1109/ITSC.2013.6728220.
Zhu, J.Z., Cao, J.X. & Zhu, Y. 2014. Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections. Transportation Research Part C: Emerging Technologies, 47: 139–154. doi:10.1016/J.TRC.2014.06.011.
Zhu, L., Yu, F.R., Wang, Y., Ning, B. & Tang, T. 2018. Big Data Analytics in Intelligent Transportation Systems: A Survey. IEEE Transactions on Intelligent Transportation Systems, 20(1): 383–398. doi:10.1109/TITS.2018.2815678.