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ABSTRACT
In this study, a real-world isolated signalized intersection with a fixed-time signal control system is considered. 

The signal timing plans are arranged regardless of the traffic density, and these plans cause delays in vehicle queues. 
To increase the efficiency of the intersection, an adaptive traffic signal control system is proposed to manage the 
intersection. To find the appropriate adaptive green times for each lane, simulations are performed by traffic simulation 
software using vehicle arrivals and other information about vehicle movements gathered from the real-world 
intersection. Then, a hybrid radial basis function neural network is developed to forecast the adaptive green times, 
which is trained and tested with historical arrivals and simulation results. The performance of the proposed network is 
compared with well-known data mining classification methods, such as support vector regression, k-nearest neighbors, 
decision tree, random forest, and multilayer perceptron methods, by different evaluation parameters. The comparison 
results provide that the developed radial basis function neural network outperforms other classification methods and 
can be successfully used for forecasting adaptive green times as an alternative to complex unsupervised classification 
methods.

Keywords: Adaptive traffic signal control; Data mining classification methods; Radial basis function neural 
networks; Traffic simulation.

INTRODUCTION
Increased vehicle traffic in urban areas adversely affects the efficiency of traffic flow, resulting in traffic congestion 

and longer travel times. The adverse effect of a traffic jam is felt even more at intersections. Although local governments 
have increased their capacities by expanding roads, intersection points are becoming a bottleneck for traffic flow. 
Therefore, controlling the intersection points with regard to traffic jams could positively affect the efficiency of the 
traffic flow.

One of the most challenging issues for local governments is the control of intersections, which have the primary 
importance in the regulation of urban transport. Traffic signal control plans have a noticeable impact on intersection 
control. Thus, optimal signal control plans are needed to eliminate problems in transportation systems. A signal timing 
policy that does not meet the needs of the real system increases queuing, delays, the release of harmful gases due to 
stopping and waiting, and, consequently, the cost of the intersection. However, with a successful signal control system, 
the efficiency of the traffic flow can be increased. As a result, comfort can also be increased by decreasing the delay. 
Besides, environmental conditions can be improved by reducing the emission of harmful gases, and the intersection 
capacity can be used more effectively by improving traffic safety (Grillo and Laperrouze, 2013).

Signal control strategies for intersections are generally classified as either coordinated or isolated systems (Yu 
et al., 2018). Coordinated intersections operate with one another to reduce delays. In contrast, signal timing plans at 
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isolated intersections operate independently, and these intersections do not have any connection. Isolated signal timing 
systems are summarized in two main categories: nonadaptive and adaptive signal control systems (Angulo et al., 
2011). Nonadaptive traffic signal control corresponds to fixed-time signal control systems, and adaptive traffic signal 
control systems apply signal timing plans according to changes in the traffic flow. Since real-time monitoring of traffic 
conditions with developing technology allows reaching the instant real-world data, it would be easier to manage the 
traffic with adaptive signal control approaches (Angulo et al., 2011). 

In this study, a real-world intersection with an isolated signal control system, which is managed by a nonadaptive 
signal control (fixed-time signalization), is considered. Fixed-time signal control systems operate signal timings with 
predetermined phase sequences and give priority to vehicle/pedestrian traffic approaching from different directions by 
predetermined time schedules. Since the vehicle arrivals from lanes at the considered intersection are unbalanced, the 
predetermined time schedules could cause problems mentioned before. However, in adaptive signal control systems, 
all of the approach lanes are continuously induced, and the cycle time and red/green times are automatically adjusted 
according to the traffic density information, which is instantly gathered from real-world by placed sensors to approach 
lanes. These systems are ideal, in that they minimize the total delays since they provide transition priority and duration 
by taking the traffic flow density into account. Therefore, the aim of this study is to improve the traffic flow at the 
intersection by proposing a new adaptive traffic signal control system, which adjusts real-time timing plans considering 
immediate changes of traffic flow, and dynamically update the green times according to vehicle arrivals and reduce 
delays in the queue. For this reason, the studies related to this topic in the literature are examined in the next section.

LITERATURE REVIEW
A successful traffic signal control policy should manage the fluctuations in traffic demands, providing real-time 

control with adaptive characteristics (Liu, 2007). However, the nonlinear nature of traffic control systems has led to 
traditional methods failing to produce successful solutions. On the other hand, successful results have been obtained 
in solving nonlinear problems using developing computer technologies and data mining techniques. To solve various 
problems in transportation systems, data mining clustering and classification methods have become the preferred 
methods concerning the storage, management, and analysis of real-world data (An et al., 2011; Zhang et al., 2011; 
Zhu et al., 2018).

Recently, artificial intelligence techniques, one of the most popular data mining tools, have been used successfully 
in isolated and coordinated systems; the majority of these are neural networks (ANN) (Spall and Chin, 1997; Srinivasan 
et al., 2006), fuzzy logic, reinforcement learning, and Q-learning applications (Araghi et al., 2015; Aslani et al., 2017; 
Bazzan, 2009; LA and Bhatnagar, 2011; Li et al., 2009; Liu, 2007). On the other hand, one of the ANN models, the 
Radial Basis Function (RBF) neural network, has been used for various traffic problems, such as traffic volume 
forecasting (Park et al., 1998; Xie and Zhang, 2006; Zhu et al., 2014), traffic flow prediction (Amin et al., 1998; 
Chen, 2017; Jun and Ying, 2008; Yang et al., 2010), truck detection (Haj Mosa et al., 2016), and public transport flow 
prediction (Çelikoğlu and Ciğizoğlu, 2007). Research about the applications in transportation systems reveals that the 
RBF neural network is mostly used for traffic flow forecasting. However, in this study, the RBF neural network is used 
to ensure traffic signal control. Although the RBF neural network has been used successfully for various intelligent 
transportation problems, to the best of our knowledge, it has not been used for predicting green times at an isolated 
signalized intersection.

To construct an adaptive traffic signal control system by estimating adaptive green times, a hybrid RBF neural 
network is developed; the hidden neuron centers are determined with K-means, and the output weights are updated 
with the Recursive Least Squares (RLS) method –it is referred to as the RBF-RLS network- (Haykin, 2009; Park et al., 
1998; Zhu et al., 2014). Then, the performance of the developed network is compared with well-known classifiers in 
the literature. Well-known classification methods (henceforth referred to as classifiers) include decision tree classifiers, 
rule-based classifiers, neural networks, and support vector machines (Tan et al., 2005). Table 1 presents some examples 
of intelligent transportation studies that include classification methods in the literature.
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Table 1. Examples of intelligent transportation studies with classification methods.

Study Problem Type Classification method

(Sun et al., 2003) traffic flow prediction linear regression

(Zhenyu et al., 2013) traffic speed estimation linear regression

(Bin et al., 2006; Vanajakshi 
and Rilett, 2007)

travel time and arrival time 
prediction support vector machine

(Xiao and Liu, 2012) traffic accident detection support vector machine

(Shi and Abdel-Aty, 2015) real-time crash prediction random forest method

(Hu et al., 2016) short-term traffic flow particle swarm optimization with 
support vector regression (PSO-SVR)

(Barbour et al., 2018) prediction of arrival times of 
freight traffic on railroads support vector regression

Although all the considered methods are used in some branches of intelligent transportation systems (traffic flow 
prediction, traffic speed estimation, traffic accident detection, travel time prediction, etc.), some of the well-known 
data mining classifiers have not been evaluated in terms of forecasting the green times. Since the proposed RBF-RLS 
network is compared with some well-known classifiers considering different evaluation performance indices, to the 
best of our knowledge, this study will be the first to compare the classifiers for forecasting the green times at an isolated 
signalized intersection. The performance analysis shows that the RBF-RLS network could be a successful method for 
forecasting adaptive green times at an isolated signalized intersection. In this sense, the performance analysis section 
will shed light on future studies regarding predicting adaptive green times with classifiers.

The rest of the paper is organized as follows. Section 3 gives the details of the data collection process from the real-
world intersection and describes the constructed database. Section 4 summarizes well-known classifiers in the literature 
and gives the details of the performance parameter indices. Section 5 compares the prediction results of various classifiers 
with the RBF-RLS network. The study is concluded and future directions are discussed in Section 6.  

PROBLEM STATEMENT AND DATA COLLECTION
Problem definition

In this study, a real-world isolated signalized intersection is considered in the province of Kayseri in Turkey, which 
is managed by a fixed-time signalization. The streets in the intersection are shown in Figure 1. Traffic on Yavuz Sultan 
Selim and Mehmet Akif Ersoy streets are observed at different times of the day, and it is determined that the traffic 
flow of Yavuz Sultan Selim Street is more intense than that of Mehmet Akif Ersoy Street. Due to the application of 
fixed-time signal control plans, the green times are lavish in Mehmet Akif Ersoy Street at certain times of the day, but, 
on the contrary, the green times in Yavuz Sultan Selim Street are insufficient, causing queues and delays. To eliminate 
this imbalance, the green times must be adaptively determined according to traffic intensity. For this purpose, an 
adaptive signal control system needs to be developed as an alternative to the currently used nonadaptive static/fixed-
time signal control system. Data collection from the real-world and the development of the database, which includes 
adaptive green times, are detailed in next subsections.
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Figure 1. Configuration of the intersection.

Data collection with magnetic sensors

To construct a database, vehicle information is gathered from the lanes, and general parameters related to the 
intersection are determined by observations. Two major systems collect the arrival information; image-based and 
sensor-based systems. Image-based systems provide queue lengths; however, their infrastructure and installation costs 
are high, and the quality of the data depends on weather conditions. On the other hand, sensor-based systems provide 
the number of vehicles waiting in the queue regardless of the environmental conditions. Thus, more accurate and 
constant data can be collected. These sensors have a very low energy requirement (10 years of battery life), are easy 
to install due to their small size, and can perform wireless communication. Therefore, magnetic sensors are preferred 
in this study.

The arrivals at the intersection are detected by the magnetic sensors embedded underground in front of the traffic 
lights at each lane, as shown with dots in Figure 1. The existence of a vehicle is recorded to a database as 0-1 via the 
wireless communication of sensors and a server located close to the lanes. The information of whether a vehicle is 
waiting or passing by at the light is analyzed automatically with the help of an algorithm in C#.Net by examining from 
zero to one and one to zero changing times, which is then converted into the number of vehicle arrivals. Additionally, 
a program has been developed to detect the number of arrivals to the intersection at the specified time intervals. This 
program ensures the flexibility of real-time traffic signal control. Since the number of arrivals can be recorded by 
desired time periods, it is possible to construct a database with any-minute arrivals such as 1-minute arrivals or 15-
minute arrivals. If the proposed network is trained with 1-minute arrivals, it could be possible to forecast real-time 
green times by only using the past 1-minute vehicle arrivals so that adaptive green times could be produced with 
instant real-time vehicle arrival information. Similarly, if the time interval is set as 15 minutes, it could be possible to 
forecast the green times by using the past 15-minute vehicle arrivals to lanes. The length of the time period depends 
on the user and/or the management policy of the intersection. 

The total number of vehicles arriving at the intersection on different days and hours is calculated using the developed 
software and recorded to the database. This database is used for the simulation of the adaptive signal control system by 
Sidra Intersection 5.1 software (SIDRA Solutions, 2019) and detailed in the next subsection. 
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Traffic simulation for an adaptive system

To determine the adaptive green times, the intersection is considered as a system with full traffic actuated. With 
the help of actuated signal control (also called adaptive traffic signal control), timing parameters can be dynamically 
adjusted to respond to real-time traffic arrival changes (Guo et al., 2019). The time interval for arrivals is determined 
as 60 minutes, and the peak time (peak hour) is calculated as 15 minutes. The lane information and turns are introduced 
to the simulation, and the intersection geometry is determined. Additionally, the actuated (adaptive) signal analysis 
method is chosen for the signalization. The green light duration is set to 8-40 seconds, which is determined after 
conversations with the municipal authorities. The hourly arrivals are then added to the system. The proportion of 
heavy vehicles is identified as 20%. The peak time factor is the proportion found by the ratio between the number of 
arrivals during maximum traffic and the maximum number of vehicles arriving at the peak time. The total number 
of arrivals to the intersection between 18.00-19.00 hours is 1012. The arrivals for the peak hour are examined at 15 
minutes intervals, and the maximum number of arrivals is determined to be 275 during 18.00-18.15. The peak hour 
factor is calculated with these values as 1012/(4*275)=0.92 (Akçelik, 2012). To cover the unit time for the volume 
(60 minutes), the maximum number of arrivals is gathered by multiplying the 15 minutes interval by 4 to calculate 
the peak flow factor. The traffic light phases are defined as in Figure 2. As an example, when the green light is on for 
Street 1, the red light is on for other streets.

Figure 2. The phases of traffic lights. 

Finally, an objective function must be defined for the simulation model. The green times can be determined 
according to different objective functions (C.K. Wong and Wong, 2003). In this paper, the aim is to minimize the 
saturation at the intersection. The saturation is calculated by the demand volume/capacity ratio, and it is desirable that 
this ratio is smaller than one. 

Adaptive system simulations are repeated for arrivals recorded between January 2017 and March 2017, and 
adaptive green times collected from the simulation model are registered to a database. This database includes inputs 
(vehicle arrivals for each lane) and outputs (adaptive green times for each lane) for a specific time interval. The 
constructed dataset is provided in (Çağlar Gençosman, 2019). The developed classifiers and the evaluation parameter 
indices of the methods are detailed in the next section.
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METHODOLOGY
Performance evaluation parameters 

To test the success of the methods, different performance indices are used. The first performance index, the root 
mean square error (RMSE), has been commonly used as a standard statistical metric to measure model performance. 
RMSE is a scale-dependent metric, and it punishes variance by giving errors with larger absolute values more weight 
than errors with smaller absolute values (Chai and Draxler, 2014) as shown in equation (1). The second performance 
index is the mean absolute error (MAE), which is also a scale-dependent metric that shows the prediction error 
by considering the balance between positive and negative errors, as shown in equation (2). The last index is the 
mean absolute percentage error (MAPE), which is a scale-independent metric that ensures a simple way to define the 
accuracy, as shown in equation (3) (Chai and Draxler, 2014). 

                                                                                  (1)

                                                                                             (2)

                                                                                      (3)

where Yi is the actual measurement; Ŷi is the predicted value, and n is the number of measurements. Since these 
parameters represent the prediction error in their own way, the aim of this study is to determine a classifier that ensures 
the smallest values of evaluation parameters. The proposed classifiers are detailed in the next subsections.  

The radial basis function neural networks

Developed by inspiration from the learning process of the human brain and suitable for solving nonlinear problems, 
artificial neural networks (ANNs) are quite successful for the discovery of the relationship between input and output 
parameters (Öztemel, 2012).  One of the most popular models of ANN is the RBF neural networks (Hornik et al., 
1990). 

RBF neural networks are three-layer networks that provide feed-forward learning. RBF neural network with local 
generalization capability and high convergence speed can equally approach any continuous function with uninterrupted 
accuracy (Zhu et al., 2014). RBF neural network consists of an input layer, a nonlinear hidden layer (radial-basis layer), 
and a linear output layer. Figure 3 shows an n-h-m RBF neural network consisting of n nodes in the input layer, m 
nodes in the output layer, and h nodes in the hidden layer. The network input vector is  and the 
output vector is . The radial-basis activation function of the k hidden node in the network is defined 
as ϕk(.) and wik represents the weight of the output layer (Okkan and Dalkılıç, 2012). In the RBF neural network, there 
is no transaction between the input layer and the hidden layer, so the inputs are given to the hidden layer without any 
changes. The information from the input layer is transmitted to the output layer after being processed by the RBF in 
the hidden layer and then multiplied by the weight values (wik) of the hidden node k and the output node i. The output 
values are calculated as in equation (4). 

             (4)

The radial basis centers selected from a subset of the input vector space are presented with  
and also  is the distance from the center of the input vector. The neurons in the hidden layer usually calculate 
the vector distance between the xk information and cj usually with the Euclidean criterion , which is 
evaluated by RBF (Aggarwal, 2018). 
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Figure 3. An RBF network.

Many different basis functions are used in RBF neural networks, including Linear, Cubic, Gaussian, Multiple 
Quadratic, and Inverse Multiple Quadratic functions. Previous studies reported that the performance of the network 
does not depend on the choice of basis function (Chen et al., 2007; Gomm and Yu, 2000). In this study, the Gaussian 
function in equation (5) is used.

                                                                                   (5)

The exponential effect of the distance between the center points ck and the data points xn, which are supposed to 
represent the data by RBF, is calculated by equation (5).

Furthermore, the σ standard deviation value represents the dispersion parameter, which significantly influences the 
performance of RBF neural network. Several methods have been used in the literature to determine the hidden neuron 
centers (ck) and update the output weights (wik). In this study, hidden neuron centers are identified with K-means, and 
output weights are updated with Recursive Least Squares (RLS) method (Chen, 1995; Haykin, 2009). 

Once the centers are identified, the output of the RBF neural network for a given Q-training set is determined by 
equation (6). Then, the outputs produced by the network are compared with the expected output, and the weights are 
updated with the RLS algorithm. The RBF neural network in this study has a hybrid learning procedure due to the use 
of the k-means method for hidden layer training and the RLS method for output layer training (henceforth referred to 
as the RBF-RLS network). The RBF-RLS network is coded in MATLAB 2013 software.

                                                          (6)

The proposed RBF-RLS network can be summarized in six steps:

Define the input layer. The size of the input layer is determined as 4, which represents the arrivals to each lane at 1. 
a specific time interval.

Define the hidden layer. The size of the hidden layer is determined as 16 after various performance comparisons. 2. 
It also represents the number of clusters, the parameter K. The K parameter of the k-means algorithm controls the 
performance and the computational complexity of the proposed method.
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K-means algorithm computes the mean of clusters, which are also the radial basis centers of the input vectors, 3. 
presented with . 

The Gaussian function calculates the vector distance between the 4. xk information and cj for the hidden neurons and 
provides the spread of the centers discovered by the k-means algorithm.

Define the output layer. The size of the output layer is determined as 4, which represents the adaptive green 5. 
times for each lane. The training of the output layer can begin after the training of the hidden layer is completed. 
The function  represents the outputs of K units in the hidden layer, and the training sample is defined by 

 where di is the desired response at the overall output of the RBF-RLS algorithm for input xi. This 
training is performed by the RLS algorithm, and the output weights (wik) are updated.

Once the network training is completed, test the network with unseen data.6. 

The epoch indicates one iteration through the training set. It directly affects the learning quality of the network, 
which is determined as 200. The experiments are performed for three different values of the learning rate parameter 
η; η=0.01, η=0.05, and η=0.1. 10-fold cross-validation is used for training and testing the RBF-RLS network. Table 2 
shows the experimental results of the RBF-RLS network with different learning rate parameters. The results provide 
that η=0.05 will be used for comparisons with other classifiers. 

It must be mentioned that the prediction quality for four lanes are evaluated individually and calculated RMSE, 
MAE, and MAPE values for each lane. Then, the average of these performance indices is presented in the following 
tables. In other words, the performance indices of all classifiers in this study are determined by calculating the average 
performance results for four outputs.

Table 2. The RBF-RLS network with different learning rate parameters and a 10-fold cross-validation

Classifier RMSE MAE MAPE

RBF-RLS (η=0.01) 0.622 0.318 0.033

RBF-RLS (η=0.05) 0.609 0.305 0.031

       RBF-RLS (η=0.1) 0.627 0.328 0.034

Additionally, another RBF neural network method in WEKA, RBFRegressor, is used to predict the adaptive green 
times (Witten et al., 2016). The initial centers are found using simple k-means. The usage of attribute weights is 
activated, and the conjugate gradient descent is used for updates. The ridge parameter, which is used to penalize the 
size of the weights in the output layer, is set to λ=0.01 and λ=0.05. The experimental results with these assumptions, 
which are summarized in Table 3, show that the RBFRegressor method performs better with λ=0.01. 

Table 3. The RBFRegressor method with different ridge parameters.

Classifier RMSE MAE MAPE

RBFRegressor (λ=0.01) 1.204 0.502 0.046

RBFRegressor (λ=0.05) 1.206 0.506 0.047

It must be mentioned that the database structure differs for the RBF-RLS network and other classifiers. The 
complete database includes four inputs representing the vehicle arrivals for each lane and four outputs representing 
the estimated adaptive green times for each lane. The RBF-RLS network has four input neurons in the input layer, 
one hidden layer, and four output neurons in the output layer. However, this structure cannot be used because of 
the architecture of the WEKA software, which only allows for one output. To predict the green times for the four 
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lanes, each classifier is run four times for each lane. Then, the prediction results of the green times for four lanes are 
evaluated together, and the average values of RMSE, MAE, and MAPE are calculated. In other words, the performance 
indices of all classifiers in this study are determined by calculating the average performance results for four outputs. 
Additionally, all the prediction values are rounded to the nearest integer, and the error and other evaluation parameter 
indices are calculated between the desired value (integer) and the predicted value (integer) for all of the classifiers, 
including the RBF-RLS network.

 Support vector regression 

Support vector machines (SVM) can be used for classifying both linear and nonlinear data (Han et al., 2012). 
SVM transform the original training data into a higher dimension by using nonlinear mapping. Thus, a linear model 
constructed in the new space can represent a nonlinear decision boundary in the original space (Witten et al., 2016). 
This method aims to find a special kind of model called the maximum margin hyperplane, which separates data into 
two classes using support vectors (Han et al., 2012). 

When the data are linearly inseparable, a nonlinear SVM, which is a quadratic optimization problem, can be 
developed by extending the approach for a linear SVM. To solve the quadratic optimization problem, a nonlinear 
mapping function called the kernel function is required. Two frequently used kernel functions for nonlinear mapping 
are the radial basis function (RBF) kernel and the sigmoid kernel (Witten et al., 2016). The SVM with the RBF kernel 
is simply a type of an RBF network, and one with the sigmoid kernel represents another type of a neural network, 
specifically a multilayer perceptron (MLP) with one hidden layer. The kernel functions presented in equations (7-9) 
are used in this study. The formulation of the polynomial kernel function of degree h is presented in equation (7), and 
the RBF kernel function is presented in equation (8), assuming that Xi and Xj represent n-dimensional vectors, and σ 
is a Gaussian parameter. The Pearson VII function-based universal kernel function (Puk) is presented in equation (9), 
where the parameter ω controls the shape of the curve. The details can be found in Üstün et al. (2006).

                                                                                  (7)

                                                                             
(8)

                                                              

(9)

Although the structure of a maximum margin hyperplane is only suitable for classification, an SVM can also be 
used for numeric predictions, such as a regression method (called Support Vector Regression-SVR). The SVR uses the 
same iterations with the SVM with some small differences (I. H. Witten, 2016; Üstün et al., 2006). 

To develop the SVR method for green time predictions, the SMOreg (Sequential Minimal Optimization for 
regression) method in WEKA is used with the following parameter values [41]. The penalty parameter C is assumed 
as C=1, C=5, and C=10 with experiments performed for each value. Additionally, three different kernel functions 
are selected for kernel function shown in (7-9): the polynomial kernel function (PolyKernel), the Gaussian RBF 
kernel function (RBFKernel), and the Pearson VII function-based universal kernel function (Puk). Although various 
algorithms can be used at the learning stage, the RegOptimizer is used to select the learning algorithm, and the default 
algorithm RegSMOImproved is used to estimate the green times (Shevade et al., 2000). Since the SMOreg method 
works with one output, the model is developed by four inputs for each arrival to each lane and one output for the green 
times. Therefore, the model is run four times to predict the green times for each lane with the same inputs (four arrivals 
for each lane), and the average of the performance parameters is calculated and used for comparisons. The same 
assumptions will be made for other classifiers in next subsections. Table 4 demonstrates the prediction results of the 
SMOreg method with different penalty parameters and different kernel functions. According to the comparison results, 
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the minimum RMSE, MAE, and MAPE values are obtained by the SMOReg method with the Puk kernel function and 
the C=5 penalty parameter. Thus, this structure will be used for comparison with the other classifiers.

Table 4. Comparison results of the SMOreg method with different penalty parameters and kernel functions.

Classifier RMSE MAE MAPE

SMOReg (PolyKernel, C=1) 2.224 1.144 0.096

SMOReg (PolyKernel, C=5) 2.218 1.157 0.098

SMOReg (PolyKernel, C=10) 2.220 1.157 0.098

SMOReg (RBFKernel, C=1) 2.454 1.188 0.094

SMOReg (RBFKernel, C=5) 2.012 1.002 0.082

SMOReg (RBFKernel, C=10) 1.716 0.882 0.074

SMOReg (Puk, C=1) 1.176 0.449 0.041

SMOReg (Puk, C=5) 1.171 0.442 0.04

SMOReg (Puk, C=10) 1.175 0.445 0.04

K-nearest neighbors  

The k-nearest neighbors’ classifier, which is an instance-based learning algorithm (Aha et al., 1991), is used for 
estimating green times. An object is classified by the majority votes of its neighbors, and the object is then assigned to 
the most common class (k is usually a small positive integer) between its nearest neighbors. Nearest-neighbor classifiers 
learn by comparing the training set and the test set. Each instance in the dataset has n attributes that represent a point 
in an n-dimensional space, which also means that all the instances in the training set are stored in the n-dimensional 
pattern space. The k-nearest neighbor classifier investigates the space for the k training instances (k-nearest neighbors) 
that are closest to the unknown instance (Han et al., 2012). A distance metric can be used to define the “closeness”, 
such as Euclidean distance as in equation (10). The distance between X1=(x11,x12,…,x1n) and X2=(x21,x22,…,x2n ) is

                                                                   (10)

If k = 1, then the object is only assigned to the class of the nearest neighbor. If the classifier is used for a numeric 
prediction, it will return a real-valued prediction. In this case, the average value of the real-valued labels associated 
with the k-nearest neighbors is calculated. The IBk method is chosen for the k-nearest neighbor algorithm, and the 
default parameters of WEKA are used with k = 1, k=2 and k=3 (Aha et al., 1991). 

Table 5. The IBk method with different k training instances.

Classifier RMSE MAE MAPE

IBk (k=1) 1.209 0.491 0.044

IBk (k=2) 1.203 0.490 0.044

IBk (k=3) 1.195 0.468 0.041

Table 5 ensures that the best prediction results are obtained with k=3 neighbors. Therefore, the IBk method will be 
used within k=3 for comparisons with other classifiers. 
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Model tree  

As one of the supervised classification algorithms, the decision trees (model trees) can be used for both classification 
and regression problems (Holmes et al., 1999). A decision tree has internal nodes that represent a test on an attribute; 
branches denote an outcome of the test, the leaf nodes include a class label, and the root node is the topmost node (Han 
et al., 2012). Decision trees can be transformed into classification rules without requiring any domain knowledge or 
parameter settings. Different classification models can be used to construct decision trees, such as linear regression, 
logistic regression, or neural networks (Han et al., 2012). However, model trees allow for building decision trees out 
of any model, which results in a generic version of decision trees.  

Model trees have a similar structure to decision trees, but they use linear functions at the leaves instead of discrete 
class labels (Quinlan, 1992). The purpose of a model tree is to construct a decision tree hierarchy that complies with 
several smaller portions of the training set, such that the overall model tree becomes proper to the full training set. 
The M5Rules method in WEKA is chosen to model the tree algorithm, which generates a decision list for regression 
problems using separate-and-conquer (Holmes et al., 1999; Quinlan, 1992). 

  Random forest  

The Random forest (RF) algorithm is a supervised learning algorithm that can be used for both classification and 
regression problems. It constructs various decision trees and combines these decision trees to obtain a more accurate 
prediction (Breiman, 2001). The results are obtained from an ensemble of decision trees, and the final result is determined 
according to a majority vote. Since RF searches for the best feature among a randomly selected subset of features, it 
ensures diversity when growing the trees, which results in a better model. The RandomForest method is developed with 
the default WEKA parameter values (Breiman, 2001). The maximum depth of the tree is determined to be unlimited, 
and the number of iterations to be performed is 100. The number of randomly chosen attributes is set to 0. 

Multilayer perceptron 

Neural networks (NN) can be used for both classification and prediction, which are detailed in previous sections. 
One of the popular learning mechanisms in NN is called backpropagation. Backpropagation learns from the comparison 
between the desired value (target) and the prediction of the network by processing the training data set. For each 
training instance, the weights of the network are updated to minimize the mean squared error between the desired 
value and the predicted value. Since these updates are made in the backward direction from the output layer through 
each hidden layer down to the first layer, the method is called backpropagation. The details can be found in Haykin 
(2009) and J. Han (2012). 

The MultilayerPerceptron method with backpropagation in WEKA is used with automatically hidden layers and 
different parameter values. The activation function between the hidden layers and the output layer is determined as 
a sigmoid function. The learning rate is a constant having a value between 0 and 1. The learning rate prevents to be 
stuck at a local minimum in decision space and supports in finding the global minimum. If the learning rate is too 
small, the learning will get slow.

On the contrary, if the learning rate is too large, the global optimum will be skipped due to a large oscillation 
between solutions. As a general assumption, the learning rate can be set as 1/t, where t indicates the number of iterations 
through the training set. The learning rate η is assumed as η=0.01, η=0.05, η=0.1, and η=0.2. The momentum parameter 
α is necessary when updating the weights. A small proportion of the updated value from the previous iteration is added 
to the new weight change. This addition smooths the search process by making changes in directionless abrupt. The 
momentum parameter is assumed as α=0.1 and α=0.2. The number of epochs is determined as 200, which represents 
one iteration through the training set. The MultilayerPerceptron method is constructed with different learning rate and 
momentum values, and prediction results regarding evaluation parameter indices are presented in Table 6.
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Table 6. The MultilayerPerceptron method with different learning rate and momentum values.

Classifier RMSE MAE MAPE

MultilayerPerceptron (α=0.1, η=0.01) 1.231 0.559 0.052

MultilayerPerceptron (α=0.1, η=0.05) 1.199 0.512 0.048

MultilayerPerceptron (α=0.1, η=0.1) 1.197 0.506 0.047

MultilayerPerceptron (α=0.1, η=0.2) 1.210 0.529 0.050

MultilayerPerceptron (α=0.2, η=0.01) 1.222 0.549 0.051

MultilayerPerceptron (α=0.2, η=0.05) 1.199 0.511 0.048

MultilayerPerceptron (α=0.2, η=0.1) 1.198 0.507 0.047

MultilayerPerceptron (α=0.2, η=0.2) 1.210 0.528 0.050

Experiments with different combinations of learning rate and momentum parameters ensure that the 
MultilayerPerceptron method provides better green time estimations within α=0.1 and η=0.1 values as in Table 6. 
This structure will be used for comparing with other methods in the next section.

RESULTS AND DISCUSSION
The RBF-RLS network is compared with other classifiers. To validate the prediction results, 10-fold cross-

validation is used for all of the methods. Table 7 presents the comparison results of different classifiers regarding the 
evaluation parameter indices. The first column shows the methodology, the second column shows the name of the 
method in WEKA, and the last three columns show the evaluation parameters. According to the comparison results, 
the RBF-RLS method outperforms other classifiers by minimizing the performance parameters. The radial basis 
function network in WEKA called RBFRegressor performs worse than the RBF-RLS method. In fact, according to the 
RMSE values, RBFRegressor makes the worst predictions out of all the models. The second best-developed method 
is the SVR algorithm (SMOreg). Although the MAE and the MAPE values of SMOreg are close to the values of the 
RBF-RLS, the RMSE value of SMOreg is almost twice as poor as the RMSE value of the RBF-RLS. Considering all 
the evaluation parameters, the MultilayerPerceptron method performs worse than the random forest (RandomForest), 
model tree (M5Rules), and k-nearest neighbors (IBk), which is a surprising result. The rule-based methods, such as 
model trees and random forest, perform better than a neural network model. 

As a result, the RBF-RLS method outperforms the other classifiers. Additionally, it is determined that the support 
vector regression, k-nearest neighbors, random forest, and model tree methods can also be used successfully in 
adaptive signal control systems. To the best of our knowledge, these methods have not been used before and have not 
been compared in the field of traffic signal control. The comparison results obtained in this study can be evaluated as 
a recommendation for future studies on adaptive signal control systems. 
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Table 7. Comparison results of the different classifiers.

Classifier WEKA Method RMSE MAE MAPE

RBF-RLS (η=0.05) --- 0.609 0.305 0.031

Support Vector Regression SMOreg (Puk, C=5) 1.171 0.442 0.040

K-nearest Neighbors IBk (k=3) 1.195 0.468 0.041

Model Tree M5Rules 1.199 0.487 0.044

Random Forest RandomForest 1.192 0.471 0.042

Multilayer Perceptron MultilayerPerceptron
(α=0.1, η=0.1) 1.197 0.506 0.047

RBF Regressor RBFRegressor (λ=0.01) 1.204 0.502 0.046

CONCLUSION
In this study, a real-world isolated signalized intersection is considered. When the vehicle arrivals at the intersection 

are examined, the irregularity between vehicle arrivals in terms of the streets and the unstable distribution of arrivals 
during the day is observed. To correct this imbalance, it is aimed to develop a signal control system that reduces the 
waiting time in the queue and is updated dynamically according to the number of vehicle arrivals. For this purpose, 
as an alternative to the current situation, which has been managed by a fixed-time signal control, an adaptive signal 
control system is developed using traffic simulation software and aimed to provide a real-time/dynamic adaptation of 
the green times according to the number of vehicle arrivals. The RBF-RLS network was proposed, and its performance 
was compared with well-known classifiers in the literature. The comparison results showed that the RBF-RLS network 
outperforms the other classifiers. However, the support vector regression, k-nearest neighbors, random forest, and 
model tree methods can also be successfully used for signal time control. This exploration will contribute to the 
literature about traffic systems and signal timing control studies. 

As an alternative to supervised classifiers, it is possible to develop unsupervised learning methods and compare the 
performances of different supervised and unsupervised classifiers. In this way, the performance analysis of the data 
mining techniques for traffic signal control can be strengthened, which may be a guide for further research. 

Considering real-world applications, the RBF-RLS network can be easily adapted to the traffic signal control 
unit and can also be applied as a decision mechanism for green times. With the implementation at the considered 
intersection in this paper, traffic flow can be regulated, and vehicle delays can be reduced. This method can be extended 
by collecting accurate data from the relevant intersections and applied in other problematic intersections. Thus, the 
real-world applications of the method can be expanded, and the positive effects achieved through intersections with 
adaptive signal control can be increased.
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