A complementary metal oxide semiconductor (CMOS) bandpass filter for cost-efficient radio frequency (RF) appliances
Abstract
A band pass filter is an inherent part of every radio frequency (RF) transceiver. The
usage of spiral inductors in band-pass filters cannot overcome limitations such as loss due to parasitic effects, large chip area, low quality factor, less tenability, etc. Therefore, this paper presents an active inductor based design of a second order bandpass filter in 0.18μm complementary metal oxide semiconductor (CMOS) technology for 2.4 GHz radio frequency (RF) applications. The centre frequency of the proposed
band pass filter can be adjusted from 1.86 GHz to 3.33 GHz with high Q factor of 250 at 2.45GHz. This filter dissipates only 3.407 mW at 1.5V supply voltage and occupies only 0.0014 mm2 chip area.
References
Aljarajreh, H., Reaz, M., Amin, M.S. & Husain, H. 2013. An active inductor based low noise amplifier
for RF receiver. Electronics and Electrical Engineering, 19:49-52.
Allidina, K. & Mirabbasi, S. 2006. A widely tunable active RF filter topology. 2006 IEEE International
Symposium on Circuits and Systems (ISCAS 2006), Island of Kos, pp.1- 4.
Andriesei, C., Goras, L., Temcamani, F. & Delacressoniere, B. 2009. Wide tuning range active RF
band-pass filter with MOS varactors Romanian Journal of Information Science and Technology,
:485-495.
Arifin, M., Mamun, M., Bhuiyan, M.A.S. & Husain, H. 2012. Design of a low power and wide band
true single-phase clock frequency divider. Australian Journal of Basic and Applied Sciences, 6:
-79.
Aziz, F.I.B.A., Mamun, M., Bhuiyan, M.A.S. & Bakar, A.A.A. 2013. A low drop-out voltage regulator
in 0.18 μm CMOS technology. Modern Applied Science, 7:70-76.
Bakken, T. & Choma, J. 2003. Gyrator-based synthesis of active on-chip inductances. Analog Integrated
Circuits and Signal Processing, 34:171-181.
Bhuiyan, M.A.S., Chew, J.X., Reaz, M. & Kamal, N. 2015. Design of an active inductor based LNA in
Silterra 130 nm CMOS process technology. Journal of Microelectronics, Electronic Components
and Materials, 45:188-194.
Bhuiyan, M.A.S., Reaz, M., Jalil, J., Rahman, L.F. & Chang, T.G. 2014. Design trends in fully
integrated 2.4 GHz CMOS SPDT switches, Current Nanoscience, 10:334-343.
Bhuiyan, M.A.S., Zijie, Y., Yu, J.S., Reaz, M.B.I., Kamal, N. & Chang, T.G. 2016. Active inductor
based fully integrated CMOS transmit/receive switch for 2.4 GHz RF transceiver, Anais da
Academia Brasileira de Ciências, 88:1089-1098.
Chen, S.W., Wu, J.W., Wu, J.D. & Li, J.S. 2011. Tunable active band-pass filter design. Electronics
letters, 47:1019-1021.
Choi, Y. & Luong, H.C. 2001. A high-Q and wide-dynamic-range 70 MHz CMOS band-pass filter
for wireless receivers. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, 48:433-440.
Córdova, D., Cruz, J. & Silva, C. 2009. A 2.3 GHz CMOS high-Q band-pass filter design using an active
inductor. XV Workshop Iberchip Buenos Aires, Argentina, pp. 496-500.
Gao, Z., Ma, J., Yu, M. & Ye, Y. 2008. A fully integrated CMOS active band-pass filter for multiband RF
front-ends IEEE Transactions on Circuits and Systems II: Express Briefs, 55:718-722.
Idris, M.I.B., Reaz, M.B.I. & Bhuiyan, M.A.S. 2013. A low voltage VGA for RFID receivers, 2013
IEEE International Conference on RFID Technologies and Applications, Johor Bahru, Malaysia,
pp. 1-4.
Krishnamurthy, S.V., El-Sankary, K. & El-Masry, E. 2010. Noise-cancelling CMOS active inductor
and its application in RF band-pass filter design. International Journal of Microwave Science and
Technology, 2010:1-8.
Kuhn, W.B., Nobbe, D., Kelly, D. & Orsborn, A.W. 2003. Dynamic range performance of on-chip
RF band-pass filters. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, 50:685-694.
Lin, L.M., Shun, W.H. & Tzuang, C.K.C. 2011. 1.58-GHz third-order CMOS active band-pass filter with
improved passband flatness. IEEE Transactions on Microwave Theory and Techniques, 59:2275-
Ren, S. & Benedik, C. 2013. RF CMOS active inductor band pass filter with post fabrication calibration.
AEU - International Journal of Electronics and Communications, 67:1058-1067.
Rosli, K.A., Daud, R.M., Mamun, M. & Bhuiyan, M.A.S. 2013. A comparative study on SOI MOSFETs
for low power applications. Research Journal of Applied Sciences, Engineering and Technology,
:2586-2591.
Uddin, M.J., Nordin, A.N., Reaz, M. & Bhuiyan, M.A.S. 2013. A CMOS power splitter for 2, 45 GHz
ISM band RFID reader in 0, 18 μm CMOS technology. Tehnički vjesnik, 20:125-129.
Wang, Y., Ye, L., Liao, H. & Huang, R. 2012. Cost-efficient CMOS RF tunable band-pass filter with
active inductor-less biquads. 2012 IEEE International Symposium on Circuits and Systems
(ISCAS), Seoul, pp. 2139-2142.
Weng, R. & Kuo, R. 2007. An ω 0-Q tunable CMOS active inductor for RF band-pass filters. 2007
International Symposium on Signals, Systems and Electronics (ISSSE’07), Montreal, pp. 571-574.
Wu, Y., Ding, X., Ismail, M. & Olsson, H. 2003. RF band-pass filter design based on CMOS active
inductors. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
:942-949.
Xiao, H. & Schaumann, R. 2007. A 5.4-GHz high-Q tunable active-inductor band-pass filter in standard
digital CMOS technology. Analog Integrated Circuits and Signal Processing, 51:1-9.
Xu, Z., Winklea, D., Oh, T.C., Kim, S., Chen, S.T.W., Royter, Y., Lau, M., Valles, I., Hitko, D.A. &
Li, J.C. 2014. A 5th order 0.8/2.4 GHz Programmable Active Band- pass Filter for Power DAC
Applications. 2014 IEEE Radio Frequency Integrated Circuits Symposium, pp. 57-60.
Yu, C., Groves, R.A., Xuejue, H., Zamdmer, N.D., Plouchart, J.O., Wachnik, R.A., Tsu, K.J. &
Chenming, H. 2003. Frequency-independent equivalent-circuit model for on-chip spiral inductors.
IEEE Journal of Solid-State Circuits, 38:419-426.