Modeling direct contact membrane distillation using experimental data

  • Emadadeen Ali King Saud University
Keywords: membrane distillation, water desalination, model calibration, one-dimension model, heat loss

Abstract

A pilot plant comprises of direct contact membrane distillation module is used for brackish water desalination. The generated experimental data is used to validate a conventional mathematical model that describe the heat and mass transfer operations in such units. The model governing equations are calibrated judicially without over parameterization to make the model predictions accurate over a wide range of feed flow rates and temperature. Specifically, the discrepancy between the feed sensible heat and heat flux must be correlated to the process parameters and incorporated in the heat balance equations. This correction leads to enhanced prediction of the outlet permeate and brine temperatures. An ad hoc tuning parameter is added to the mass flux equating to improve the accuracy of mass production estimation. However, it is found that using a one-dimension model that account for variation of the bulk temperature along the membrane length can enhance the mass production prediction significantly without the need for un-necessary tuning parameter.

Author Biography

Emadadeen Ali, King Saud University
Professor of chemical engineering at King Saud University specialized in Process Control Applications.

References

Ali, E., Orfi, J. 2018. An experimentally calibrated model for heat and mass transfer in full-scale direct contact membrane distillation, Desalination and Water Treatment, in the press

Alkhudhiri, A., Darwish, N. and Hilal, N. 2012. Membrane Distillation: A Comprehensive Review, Desalination, 287:2-18, https://doi.org/10.1016/j.desal.2011.08.027

Alklaibi, A.M. and Lior, N. 2005. Membrane-distillation Desalination: Status and Potential, Desalination,171:111-131, https://doi.org/10.1016/j.desal.2004.03.024

Andrjesdóttir, O., Ong, C.L., Nabavi, M. Paredes, S., Khalil, A.S.G., Bruno, M. and Poulikakos, D. 2013. An Experimentally Optimized Model for Heat and Mass Transfer in Direct Contact Membrane Distillation, International Journal of Heat and Mass Transfer, 66: 855–867. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.051

Ashoor, B., Fath, H., Marquardt, W., Mhamdi, A. 2012. Dynamic modeling of direct contact membrane distillation processes, Computer Aided Chemical Engineering, 31: 170-174, https://doi.org/10.1016/B978-0-444-59507-2.50026-3.

Banat, F., Jwaied, N., Rommel, M., Koschikowski, J., Wieghaus, M. 2007. Desalination by a “compact SMADES” autonomous solar-powered membrane distillation unit, Desalination, 217:29–37. https://doi.org/10.1016/j.desal.2006.11.027

Chen, T-C, Ho, C-D, Yeh, H-M. 2009. Theoretical modeling and experimental analysis of direct contact membrane distillation, Journal of Membrane Science 330: 279–287, https://doi.org/10.1016/j.memsci.2008.12.063

Chen, T-C., and Ho, C-D. 2010. Immediate Assisted Solar Direct Contact Membrane Distillation in Saline Water Desalination, Journal of Membrane Science, 358:122-130. https://doi.org/10.1016/j.memsci.2010.04.037

Close, E. and Sørensen, E. 2010. Modelling of Direct Contact Membrane Distillation for Desalination, 20th European Symposium on Computer Aided Process Engineering – ESCAPE20, Italy

Drioli, E., Ali, A., and Macedonio, F. 2015. Membrane Distillation: Recent Developments and Perspectives, Desalination, 356: 56-84. https://doi.org/10.1016/j.desal.2014.10.028

Duong, H. C., Cooper, P., Nelemans, B., Tzahi, Y. C., Nghiem, L.D. 2015. Optimising Thermal Efficiency of Direct Contact Membrane Distillation by Brine Recycling for Small-scale Seawater Desalination, Desalination, 374: 1-9. https://doi.org/10.1016/j.desal.2015.07.009

Eleiwi, F., Ghaffour, N., Alsaadi, A.S., Francis, L., Laleg-Kirati, T-M. 2016. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process, Desalination, 384, 15: 1-11. https://doi.org/10.1016/j.desal.2016.01.004

Fard, K., Manawi, Y.M., Rhadfi, T., Mahmoud, K.A. Khraisheh, M. and Benyahia, F. 2015. Synoptic Analysis of Direct Contact Membrane Distillation Performance in Qatar: A Case Study, Desalination, 360: 97–107. https://doi.org/10.1016/j.desal.2015.01.016

Francis, L., Ghaffour, N., Alsaadi, A.A., Amy, G.L. 2013. Material gap membrane distillation: A new design for water vapor flux enhancement. J. Membrane Science, 448: 240–247. https://doi.org/10.1016/j.memsci.2013.08.013

Geng, H., Wang, J., Zhang, C., Li, P., and Chang, H. 2015. High Water Recovery of RO Brine Using Multi-Stage Air Gap Membrane Distillation, Desalination, 355: 178–185. https://doi.org/10.1016/j.desal.2014.10.038

Guan, G., Yang, X., Wang, R., and Fane, A.G. 2015. Evaluation of Heat Utilization In Membrane Distillation Desalination System Integrated With Heat Recovery, Desalination, 366: 80-93. https://doi.org/10.1016/j.desal.2015.01.013

Khalifa, E. 2015. Water and air gap membrane distillation for water desalination—An

experimental comparative study. Separation Purification Technology, 141: 276–284. https://doi.org/10.1016/j.seppur.2014.12.007

Khayet, M. 2010. Desalination by Membrane Distillation. In: Encyclopedia of Life Support Science (EOLSS), Water and Wastewater Treatment Technologies.

Lawal, D.U. and Khalifa, A.E. 2014. Flux Prediction in Direct Contact Membrane Distillation, International Journal of Materials, International journal of Mechanics, Materials and Manufacturing, 2(4):302-308. DOI: 10.7763/IJMMM.2014.V2.147

Lienhard, J.H., Antar, M.A., Smith, A., Blanco, J., Zaragoza, G. 2012. Solar Desalination. Annual Reviews of Heat Transfer, 15, Article 4659. 10.1615/AnnualRevHeatTransfer.2012004659

Lokare, O.R., Tavakkoli, S. , Khanna, V., Vidic, R.D. 2018. Importance of feed recirculation for the overall energy consumption in membrane distillation systems, Desalination, 428: 250–254. https://doi.org/10.1016/j.desal.2017.11.037

Mahmoudia, G. M., Goodarzia, S.D., and Akbarzadeha, A. 2017. The Experimental and theoretical study of a lab scale permeate gap membrane distillation setup for desalination, Desalination, 419: 197–210. https://doi.org/10.1016/j.desal.2017.06.013

Nakoa, K., Date, A. Akbarzadeh, A. 2014. A Research on Water Desalination Using Membrane Distillation, Desalination and Water Treatment, 1- 13 . https://doi.org/10.1080/19443994.2014.972731

Pangarkar, B.L., Sane, M.G. and Guddad, M. 2011. Reverse Osmosis and Membrane Distillation for Desalination of Groundwater: A Review, ISRN Materials Science, Volume 2011, Article ID 523124, 1-9. http://dx.doi.org/10.5402/2011/523124

Phattaranawik, J. Jiraratananon, R. 2001. Direct Contact Membrane Distillation: Effect of Mass Transfer on Heat Transfer, Journal of Membrane Science, 188:137-143. https://doi.org/10.1016/S0376-7388(01)00361-1

Raut R.P. and Kulkarni, K.S. 2012. Desalination by Membrane Distillation, International Journal of Advanced Engineering Research and Studies (open source), 1(3) : 115-121.

Safavi, M., and Mohammadi, T. 2009. High-salinity Water Desalination Using VMD, Chemical Engineering Journal, 149: 191-195. https://doi.org/10.1016/j.cej.2008.10.021

Swaminathan, J., Chung, H.W., Warsinger, D., Al-Marzooqi, F., Arafat, H.A., Lienhard, J.H. 2016. Energy efficiency of permeate gap and novel conductive gap membrane distillation. J Membrane Science, 502: 171–178. https://doi.org/10.1016/j.memsci.2015.12.017

Winter, D., Koschikowski, J. and Wieghaus, M. 2011. Desalination Using Membrane Distillation: Experimental Studies on Full Scale Spiral Wound Modules, Journal of Membrane Science, 375:104–112. https://doi.org/10.1016/j.memsci.2011.03.030

Zhang, J. 2011. Theoretical and Experimental Investigation of Membrane Distillation, Ph.D. Thesis, Victoria University, Australia.

Published
2019-06-02
Section
Chemical Engineering