Wavelet Domain Compression Analysis for Differential Interferometric Synthetic Aperture Radar (DInSAR) Images
Abstract
This research expounds on wavelet packet based compression methods for Differential Interferometric Synthetic Aperture Radar (DInSAR) images. Synthetic Aperture Radar (SAR) is a Satellite Radar imaging technology, which is used to capture data for different periods during day or night and at different weather conditions. Like many of the satellite imaginary, (DInSAR) Images can be compressed during retrieval, transmission and storage. Optimal compression techniques are required to preserve the information content of the high spectral image. This study elucidates the post-processing compression analysis of (DInSAR) images, using Wavelet Packets focusing on suitable selection of mother wavelets and empirical thresholding methods. Different behaviors of compression allow us to design and to select the mother wavelets/ threshold methods for optimal performance. It is observed that Symlet wavelet functions had consistent performance in terms, of Mean Square Error (MSE) and Peak Signal to Noise Ratio values (PSNR). Mother wavelet bior3.7 showed worse performance. The research investigation succeeded in providing improved compression performance of various mother wavelets for (DInSAR) images.References
Beylkin G., Coifman R., and Rokhlin V. 1991 Fast wavelet transforms and numerical algorithms, Comm. Pure Appl. Math.,44: 141-183.
Candès E. J. 1998. Ridgelets: theory and applications. Ph.D. Thesis. Department of Statistics, Stanford University.
Chenouard, N.; Unser, M. 2013. 3D Steerable Wavelets in Practice, IEEE Transactions on Image Processing 21(11): 4522–4523.
Chaudhry M. Jafri A, M. N., Mufti M. and Akbar M. 2007. Design of appropriate wavelet bases for texture discrimination, Kuwait Journal of Science and Engineering 34(2): 73-84
Charrier, C.; Knoblauch, K.; Maloney, L.T.; Bovik, A.C.; Moorthy, A.K. 2013.Optimizing Multiscale SSIM for Compression via MLDS, IEEE Transactions on Image Processing 21(12): 4682–4694.
Coifman RR & Wickerhauser MV. 1992 Entropy-Based Algorithms for Best Basis Selection, IEEE Transactions on Information Theory, 38(2).
Cohen A., Daubechies I., and Feauveau J.C. 1991 Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math.,45(5): 485-560.
Daubechies I. 1992. Ten Lectures on Wavelets. Soc. for Ind. & Appl. Math.198, 254-257, 1st ed.
Ellmauthaler, A.; Pagliari, C.L.; da Silva, E.A.B. 2013. Multiscale Image Fusion Using the Undecimated Wavelet Transform With Spectral Factorization and Nonorthogonal Filter Banks, IEEE Transactions on Image Processing 22(3): 1005–1017.
Fang, Y.; Chen, Z.; Lin, W.; Lin, C.-W. 2013. Saliency Detection in the Compressed Domain for Adaptive Image Retargeting, IEEE Transactions on Image Processing 21(9): 3888–3901.
Fornaro, G.; Atzori, S.; Calo, F.; Reale, D.; Salvi, S. 2012 Inversion of Wrapped Differential Interferometric SAR Data for Fault Dislocation Modeling, Geoscience and Remote Sensing, IEEE Transactions on Image Processing 50(6): 2175–2184.
Gonzalez R. & Wood R. 2002. Digital Image Processing, Pearson Education, Inc., 2nd edition.
Grabriel A. K., Goldstein R., and Zebker H. A., 1989 Mapping small elevation changes over large areas: Differential radar interferometry, J. Geophys. Res., 94: 9183–9191.
Ho, J.; Hwang, W.-L. 2013. Wavelet Bayesian Network Image De-noising, IEEE Transactions on Image Processing 22(4): 1277–1290.
Hui Ji; Xiong Yang; Haibin Ling; Yong Xu. 2013. Wavelet Domain Multifractal Analysis for Static and Dynamic Texture Classification, IEEE Transactions on Image Processing 22(1): 286–299.
Hussain R., Sikander M. A., Sheeraz A. , Memon A.R., 2011. Performance Analysis of Wavelet Packet Based Image compression in the Presence of Noise Patterns. Int’l Jour. of Acad. Research 3(2):
Jingyi Chen; Zebker, H.A. 2012. Ionospheric Artifacts in Simultaneous L-Band InSAR and GPS Observations, Geoscience and Remote Sensing, IEEE Transactions on Image Processing 50(4): 1227–1239.
Kayabol, K.; Zerubia, J.2013. Unsupervised Amplitude and Texture Classification of SAR Images with Multinomial Latent Model, IEEE Transactions on Image Processing 22(2): 561–572.
Kristof Ostir1 Marko komac. 2007 PSInSAR and DInSAR methodology comparison and their applicability in the field of surface deform., GEOLOGIA 50(1): 77-96.
Massonnet D., Rossi M., Carmona C., Adragna F., Peltzer G., Fiegl K., and Rabaute T., 1993 The displacement field of the Landers earthquake mapped by radar interferometry, Nature. Res., 364:138– 142.
Morrison, K.; Bennett, J.C.; Nolan, M.; Menon, R. 2011 Laboratory Measurement of the DInSAR Response to Spatiotemporal Variations in Soil Moisture, Geoscience and Remote Sensing, IEEE Transactions on Image Processing 49(10): 3815 – 3823.
M. Misiti, Y. Misiti, G. Oppenheim, and J.M. Poggi. 2008 Wavelet toolbox 4 – Users’s guide, The MathWorks, Inc., 2008
Neumann, M.; Saatchi, S.S.; Ulander, L.M.H.; Fransson, J.E.S. 2012 Assessing Performance of L- and P-Band Polarimetric Interferometric SAR Data in Estimating Boreal Forest Above-Ground Biomass, Geoscience and Remote Sensing, IEEE Transactions on Image Processing 50(3): 714–726.
Yang, W.; Dai, D.; Triggs, B.; Xia, G.-S. 2013. SAR-Based Terrain Classification Using Weakly Supervised Hierarchical Markov Aspect Models, IEEE Transactions on Image Processing 21(9): 4232–4243.
Yue Huang; Ferro-Famil, L.; Reigber, A. 2012 Under-Foliage Object Imaging using
Using SAR Tomography and Polarimetric Spectral Estimators, Geoscience and Remote Sensing, IEEE Transactions on Image Processing 50(6): 2213–2225.
Zhang, Y.; Kingsbury, N. 2013 Improved Bounds for Subband-Adaptive Iterative Shrinkage/Thresholding Algorithms , IEEE Transactions on Image Processing 22(4): 1373–1381.