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ABSTRACT

This research expounds on wavelet packet based compression methods for Differential
Interferometric Synthetic Aperture Radar (DInSAR) images. Synthetic Aperture Radar
(SAR) is a Satellite Radar imaging technology, which is used to capture data for different
periods during day or night and at different weather conditions. Like many of the satellite
imaginary, (DInSAR) Images can be compressed during retrieval, transmission and storage.
Optimal compression techniques are required to preserve the information content of the high
spectral image. This study elucidates the post-processing compression analysis of (DInSAR)
images, using Wavelet Packets focusing on suitable selection of mother wavelets and empirical
thresholding methods. Different behaviors of compression allow us to design and to select
the mother wavelets/ threshold methods for optimal performance. It is observed that Symlet
wavelet functions had consistent performance in terms, of Mean Square Error (MSE) and Peak
Signal to Noise Ratio values (PSNR). Mother wavelet bior3. 7 showed worse performance. The
research investigation succeeded in providing improved compression performance of various
mother wavelets for (DInSAR) images.

Keywords: Synthetic aperture radar (SAR); thresholding methods; compressed
image; satellite radar images; remote sensing.

INTRODUCTION

High Spectral Space Borne Satellite Imaginary, such as Synthetic Aperture Radar
(SAR) images, can be very beneficial for various ecological and environmental
predictions and monitoring. Land sliding, volcanic activities and mine subsidence are
some of the examples. Some of the recent researches in SAR include: unsupervised
amplitude and texture classification of SAR images with multinomial latent model
(Kayabol & Zerubia 2013), SAR-based terrain classification using weakly supervised
hierarchical markov aspect models (Yang er al., 2013), optimizing multiscale
SSIM for compression via MLDS (Charrier et al., 2013), saliency detection in the
compressed domain for adaptive image retargeting (Fang er al., 2013), the imaging
of objects under the foliages (Yue e al., 2012), ionosphere total electron content
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(TEC) measurement (Jingyi & Zebker 2012), bio-mass imaging in forests structure
monitoring (Neumann ef al., 2012) and performance analysis of wavelet packet based
image compression in the presence of noise (Hussain et al., 2011).

Differential Interferometric Synthetic Aperture Radar (DInSAR) is the latest version
of SAR which exploits satellite radar images taken at different sets of angles, polarizations
and wavelengths at different times to form digital elevation models. It is used to detect
changes occurring between two consecutive data acquisitions. Grabriel et al. (1989) used
DInSAR to find the changes in the soil moisture, by measuring changes in the penetration
depth of the electromagnetic pulses. Massonnet (1993) detected and validated quake
signature using European Remote Sensing satellite (ERS-1) data. Recent researches in
DInSAR include: the tectonics monitoring of earthquake risk management (Fornaro ef
al., 2012), measurement of volume change during land deformation (Sumantyo et al.,
2012) and accurate soil moisture monitoring of land subsidence (Morrison ef al., 2011).

Wavelet Packet belongs to the wavelet transform, in which signal is passed through
a higher number of filters than in the discrete wavelet transform (DWT). In wavelet
packet decomposition, both detail and approximation coefficients are decomposed to
form a full binary tree. Due to the full decomposition it offers greater range of signal
analysis and high perceptual image quality with a low bit rate. On the contrary, only
previous approximation coefficients are decomposed to form binary tree in discrete
wavelet transform (Coifman & Wickerhauser 1992; Daubechies 1992 and Gonzalez
& Wood 2002).

Existing literature suggests that wavelet transform has an array of applications.
Recent research includes: the wavelet Bayesian network image de-noising (Ho
& Hwang 2013), the improved bounds for subband-adaptive iterative shrinkage/
thresholding algorithms (Zhang & Kingsbury 2013), the wavelet domain multifractal
analysis for static and dynamic texture classification (Hui Ji e al., 2013), the multiscale
image fusion using the undecimated wavelet transform with spectral factorization
and nonorthogonal filter banks (Ellmauthaler ef al., 2013), the 3D steerable wavelets
in practice (Chenouard & Unser 2013) and selecting the best wavelet for texture
discrimination (Chaudhry ef al., 2007).

Compression scores can be analyzed by the following two parameters: the retained
energy £(%) and the number of zeros NZ(%) (Misiti et al., 2008). The retained energy
measures the information retained after the compression, thus it relates with the
quality of the compressed image. The number of zeros is another way of measuring
compression.

Mathematically the retained energy E(%) is defined as (1):

E(%) = 100x{c—|}2
Il

-2

(1
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Where C is the coefficients of the original signal, CC are the coefficients of the
current decomposition, and ||.||, the vector norm.

Mathematically the number of zeros NZ (%, is defined as (2):

NZ (%) = 100x (Menbreissicieumpoion @

Key criterion is the quality of the compressed image which is obtained through
mean square error (MSE) and peak signal noise ratio (PSNR). MSE is a quality
assessment method, used to measure the deformation of the image. It can be expressed
as the mean of square distance between pixel of the original image 4, and pixel of the
reconstructed image B”, Mathematically it can be given as (3):

MSE=3 > ~———F Q 5 D 3)

5 ¥

The smaller value of MSE results in large value ofthe PSNR means that reconstructed
image is close to the original image. Mathematically it can be given as (4):

PSNR =10 log*(zss_} (4)

MSE

The motivation of this study is to reduce redundancy and preserve vital information
content of compressed DInSAR Images. This study expounded on wavelet packet
based compression for SAR images with focus on selecting appropriate mother
wavelet for image compression.

PROCEDURE

Wavelet based implementation involves various components for compression
analysis including wavelet transformation, thresholding, entropy encoding and non-
zero coefficient selection (Gonzalez & Wood 2002) as shown in figure 1. Wavelet
transformations involve converting signal/image into coefficients across various sub-
bands. The thresholding criterion involves the selection of coefficient for signal/image
reconstruction. Global and level dependents are the two choices for thresholding. In
global thresholding a single value of the thresholding is applied across each sub-band
of the image, while in level dependent thresholding different values of the thresholding
are applied across each sub-band of the image. Therefore if the noise is independent of
the sub-band, then global thresholding could produce optimal results; while, if noise
model varies across different sub-bands, then level dependent thresholding could
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possibly produce optimal results (Donoho & Johnstone 1994). Mathematically it can
be given as (5):

A’Umbnf =N 2 ln NO_

Where N being the signal length, ¢ being the noise variance.

(5)

It could be further defined in terms of soft and hard thresholding. Entropy coding
used more frequent short code words first for assigning more encoded values;
recursively these short code words were utilized to encode longer code words for
assigning less encoded values. In this way, information (an image in our case) can be
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Fig. 1. Wavelet transform based compression analysis for DInSAR Images.

The procedure describes compression performance analysis of mother wavelets
for DInSAR Images involve the following steps:

1 - Three DInSAR Images were selected for compression performance analysis.
The first image is gray image dinsar! with 256x256 pixels. The second image
is color image dinsar2 with 256x256 pixels. The third image is colored image
dinsar3 with 320x400 pixels.

2 -  Wavelet transformation involves the conversion of image into large number of
coefficients. This process is termed as multi resolution decomposition analysis
(Gonzalez & Wood 2002).

3 - Thresholding methods for compression govern the criteria for selecting



Wavelet domain compression analysis for differential interferometric synthetic aperture radar (DInSAR) images 54

coefficients. Three empirical methods were used for thresholding, namely
Balance Sparsity-norm, Removing near zero and Balance Sparsity-norm (sqrt).
Details can be found in (Misiti ef al., 2008). For Balance Sparsity-norm, ¢
denotes the detail coefficients; two curves are built associating, for each
possible threshold value 7, two percentages:

The 2-norm recovery in percentage.

The relative sparsity in percentage, obtained from compressed image by setting
to zero the coefficients less then t in absolute value.

A default is provided by taking the square root of the previous .

For Remove Near 0 ¢ denotes the detail coefficients at level 1obtained from the
decomposition of the image using db/. The threshold value is set to median
(abs(c) ) or to 0.05 max (abs(c) ) if median(abs(c) ) = 0.

If the detail coefficients ¢ of the signal/image are very small, then they can be
suppressed to zero without compromising the quality of the image. The value
of detail coefficients ¢ is governed by threshold t. High value of threshold t
may result in reduction of detail coefficients which result in loss of energy
(information content). Compression rate and energy retention can be governed
by threshold t and detail coefficients ¢ of the signal/image.

Entropy coding responsible for further compressing the quantized values
containing redundancies in the given set of data.

Wavelet inverse transformation involves the conversion of entropy encoded
coefficients to the compressed image. This process is termed as multi resolution
reconstruction analysis (Gonzalez & Wood 2002).

Compression performance of various thresholding methods involves global
threshold, Retained Energy (%) and Number of Zeros (%).

Compression performances of various mother wavelets are measured using
Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE).

Rate-distortion theory provides the foundations for lossy data/image
compression. The Rate R defines the minimum number of bits per symbol to
approximately reconstruct the image without exceeding a given distortion D.
Mathematically Rate-distortion function can be given as (6):

R(D) = % 1og2(‘;" J

(6)

Where %, is the variance of signal/image x, this study applied MSE as the measure
of distortion D.
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The Matlab ® based analysis has been performed on DInSAR Images, as shown in
figure 2(a) as dinsarl, figure 2(b) as dinsar2 and figure 2(c) as dinsar3. Test images
consist of both grey and color images with different dimensions. In SAR images,
radar waves used three polarizations namely HH-pol, VV-pol and VH-pol in image
synthesized as in case of images dinsar2 and dinsar3.

(a) (b) (c)

Fig. 2. Tesl images consists of both grey and color images with different dimensions.

RESULTS AND DISCUSSION

This research focuses on the properties of mother wavelets that lead to the best
performance for DInSAR Image compression. These findings are applicable for
efficient compression coding. DInSAR image compression was performed for various
simulation settings. Results have established the performance of wavelet packet
compression for thresholding namely Balance Sparsity-norm, Removing near zero
and Balance Sparsity-norm (sqrt); further details can be seen at (Misiti ef al., 2008).
These finding are applicable to many problems that involve the mother wavelet. Here,
we have used them in the framework of wavelet thresholding (Donoho & Johnstone
1994), for a well known application of image reconstruction.

Performance Design Criterion

The performance design criterion focuses mother wavelet properties including
compactly supported symmetry, orthogonality and vanishing moments. Mother
wavelet involves the selection of appropriate wavelet function translation and dilation.

1 L —T
()=—
v, (0) w( : J .

s

Equation (7) represents Mother wavelet prototype, where (z', S) are translation
and scale respectively (Cohen et al., 1991). Translation of the wavelet defines the
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1 -1
location of the window, while JH is used for wavelet normalization and W( § ] is

the mother wavelet (Cohen er al., 1991).

Various mother wavelets will demonstrate in this analysis including Symlet
(Daubechies 1992), Coiflet (Beylkin et al., 1991) and Bior (Cohen et al., 1991).
Mother wavelet Daubechies belongs to compactly supported orthogonal wavelets.
Mathematically, it is represented as bN, where N is the order, and db represents
Daubechies wavelet. dbl and db2 are used in this study. Mother wavelet Bior has
linear phase property. Four biorN family members are used in this study (bior3.7,bior
4.4, bior 5.5 and bior 6.8). Three coifletN family members are used in this study
(coifl,coif2 and coif4). Coiflet wavelet is more symmetrical than db wavelet. Coiflet
wavelet belongs to family of near-symmetrical wavelets. Symlet wavelets belong to
Daubechies wavelet with increased symmetry. Four symler family members are used
in this study (sym3,sym4, sym3 and sym6).

Three empirical methods are analyzed in terms of percentage of energy retained
and percentage of number of zero for image global threshold, as shown in table 1,
table 2 and table 3. A significant reduction percentage of number of zero is observed
in Remaoving near zero method, compared to Balance Sparsity-norm method for given
test images,

Table 1. Compression performance of various thresholding methods (dinsar1236 x256)

Global Retained Number of

Ehresiiald Methiod Threshold  Energy (%)  Zeros (%)
Balance Sparsity-norm 148.4 93.23 93.24
Removing near zero 8.5 99.92 44.45
Balance Sparsity-norm (sqrt) 12.18 99.83 54.34

Table 2. Compression performance of various thresholding methods (dinsar2 256x256)

Global Retained Number of
hold Method
Threshe etho Threshold Energy (%) Zeros (%)
Balance Sparsity-norm 248.8 94.78 94,74
Removing near zero 0.5 100.00 11.18

Balance Sparsity-norm (sqrt) 15.77 99.82 73.02
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Table 3. Compression performance of various thresholding methods (dinsar3 320x400)

Threshold Method thl;::sl:::)]ld El:::;n:;o) 122:?5/3
Balance Sparsity-norm 404.5 94.34 94.34
Removing near zero 5 99.98 50.02
Balance Sparsity-norm (sqrt) 20.11 99.70 84.53

Compression Performance of Various Mother Wavelets (dinsar! 256x256) is
shown in Table 4.

Starting with Daubechies wavelet functions db/; the image quality index Peak
Signal to Noise Ratio (PSNR) is 48.6649 with Mean Square Error (MSE) of 0.8912.
For Daubechies wavelet functions db2, the image quality index Peak Signal to Noise
Ratio (PSNR) is 48.0893 Mean Square Error (MSE) of 1.0175. It is found that for 4b2
Mean Square Error (MSE) value increases compared with db/.

For Coiflet wavelet functions Coifl, Coif2 and Coif4, the image quality index Peak
Signal to Noise Ratio (PSNR) is 48.07 with Mean Square Error (MSE) of 1.02.

Another set of analysis includes bi-orthogonal wavelet functions; bior1.5, bior3.7,
biord. 4, bior5.5 and bior6.8. For bi-orthogonal wavelet functions biorl.5, the image
quality index Peak Signal to Noise Ratio (PSNR) is 48.1838 with Mean Square Error
(MSE) of 0.9956. For bi-orthogonal wavelet functions bior3.7, the image quality
index Peak Signal to Noise Ratio (PSNR) is 44.2305 with Mean Square Error (MSE)
of 2.4742. 1t is concluded that mother wavelet bior3. 7 showed worse results in terms
of Mean Square Error (MSE) and Peak Signal to Noise Ratio values (PSNR).

Another set of analysis includes Symlet wavelet functions; sym3, sym4, sym3 and
symé6. It is observed that Symlet wavelet functions have consistent performance in
terms of Mean Square Error (MSE) and Peak Signal to Noise Ratio values (PSNR).
Optimal DInSAR images obtained by wavelet packed based compression using sym3
is shown in table 4.

Last set of analysis includes rate-distortion based R (D) function applied on
compressed image in the wavelet packet domain. For most of wavelet functions,
consistent performance is observed in terms of rate-distortion criterion. Optimal value
is obtained using sym3 as shown in table 4.
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Table 4. Compression performance of various mother wavelets (dinsarl 256x256)

Mother Wavelets MSE PSNR R(D)
db:1 0.8912 48.6649 1.59
db:2 1.0175 48.0893 1.53
Coif: 1 1.0200 48.0786 1.52
Coif:2 1.0235 48.0639 1.51
Coif 4 1.0116 48.1149 1.53
Bior:1.5 0.9936 48.1838 1.54
Bior:3.7 2.4742 44.2305 1.08
Bior:4.4 1.0670 47.8831 1.51
Bior:3.5 0.9588 48.3477 1.60
Bior:6.8 1.0747 47.8519 1.50
Sym:3 1.0124 48.1113 1.53
Sym. 4 1.0125 48.1109 1.53
Sym: 5 1.0162 48.0951 1.52
Sym:6 1.0086 48.1277 1.54

(a) (b) (c)

Fig. 3. Compressed DInSAR Images using sym3 mother wavelet

CONCLUSION

In this study, an investigation has been made on wavelet packet compression for
Differential Interferometric Synthetic Aperture Radar (DInSAR) Images. Due to the
high spectral nature of the images. the selection of mother wavelets and threshold
methods may vary. This paper is an attempt to introduce a framework for an efficient
selection of mother wavelets and threshold methods for (DInSAR) Image compression.
Some of the research challenges are region of interest based compression, ground
moving target imaging and three dimensional SAR image processing.



59

Rashid Hussain and Abdul Rehman Memon

In Summary:

1

During the investigation of mother wavelets and threshold methods for
(DInSAR) Image compression, it was noticed that mother wavelets demonstrated
consistent performance except bior3. 7 which did not yield optimal results.

We applied image quality matrix Mean Square Error (MSE) and Peak Signal to
Noise Ratio values (PSNR) to DInSAR Images. The image quality assessment
is obtained by calculating the ratio between original image and compressed
image. This measure involves the pixel value of corresponding two images.

It is observed that Symlet wavelet functions have consistent performance in
terms of Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR)
values.

Optimal DInSAR images obtained by wavelet packed based compression using
sym3 can be seen in table 4.

Rate-distortion criterion also demonstrated mother wavelet sym3 as a best
choice.

DInSAR images after compression can be seen in figure 3.

A significant reduction percentage of number of zero is observed in Removing
near zero method, compared to Balance Sparsity-norm method for DInSAR
images.

Recently, various studies have been conducted for the appropriate selection
of mother wavelets for image reconstruction. As far as DInNSAR image is
concerned, limited studies have been carried out. In future, more research
could be conducted for the selection of appropriate mother wavelet for SAR
Image compression.
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