Spacecraft Chaotic Attitude Control with Certain Actuator Failure Based on Integral Sliding Mode
Abstract
This paper investigates the control problem of spacecraft chaotic attitude motion with certain actuator failure and control input constraint. First, the spacecraft chaotic attitude system is written in nonlinear equation form of three input. When failure of one actuator or failures of two actuators exist, it can be transformed into nonlinear equation form of double input or single input, respectively. To satisfy task-requirement, trajectory planning is performed in advance, and the dynamics equation of angular velocity error can be obtained. Then, integral sliding mode ideas are incorporated into the controller, which consists of equivalent control term and switching control term. Finally, simulations are performed to assess the performance of the proposed controller. The simulation results indicate that the controller has the following characteristics: (a) elimination of chaotic attitude motion, (b) explicit consideration of control input constraint, (c) presupposition of attitude stabilization time, (d) track reference angular velocity trajectory designed in advance, (e) consideration of certain actuator failure, (f) robustness to bigger external disturbance torque.References
Aghababa, M. P., & Aghababa, H. P. 2013. Robust synchronization of a chaotic mechanical system with nonlinearities in control inputs. Nonlinear Dynamics, 73(1-2), 363-376.
Alwi, H., & Edwards, C. 2008. Fault tolerant control using sliding modes with on-line control allocation. Automatica, 44(7), 1859-1866.
Alwi, H., Edwards, C., Stroosma, O., & Mulder, J. A. 2008. Fault tolerant sliding mode control design with piloted simulator evaluation. Journal of Guidance, Control, and Dynamics, 31(5), 1186-1201.
Beletsky, V. V., Lopes, R. V. F., & Pivovarov, M. L. 1999. Chaos in spacecraft attitude motion in Earth’s magnetic field. Chaos: An Interdisciplinary Journal of Nonlinear Science, 9(2), 493-498.
Hu, Q. 2010. Robust adaptive sliding-mode fault-tolerant control with L 2-gain performance for flexible spacecraft using redundant reaction wheels. IET Control Theory & Applications, 4(6), 1055-1070.
Ke, Z., Zhi-Hui, W., Li-Ke, G., Yue, S., & Tie-Dong, M. 2015. Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance. Chinese Physics B, 24(3), 030504.
Kuntanapreeda, S. 2009. Chaos synchronization of unified chaotic systems via LMI. Physics Letters A, 373(32), 2837-2840.
Liao, F., Wang, J. L., & Yang, G. H. 2002. Reliable robust flight tracking control: an LMI approach. IEEE Transactions on Control Systems Technology, 10(1), 76-89.
Lu, J. G. 2006. Chaotic dynamics of the fractional-order lü system and its synchronization. Physics Letters A, 59(4), 305-311.
Lu, J. G., & Chen, G. 2006. A note on the fractional-order chen system. Chaos Solitons & Fractals, 27(3), 685-688.
Luo, W., Chu, Y. C., & Ling, K. V. 2005. H∞ inverse optimal attitude-tracking control of rigid spacecraft. Journal of guidance, control, and dynamics, 28(3), 481-494.
Ma, Y., Jiang, B., Tao, G., & Cheng, Y. 2015. Uncertainty decomposition-based fault-tolerant adaptive control of flexible spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 51(2), 1053-1068.
Meehan, P. A., & Asokanthan, S. F. 2002. Control of chaotic instabilities in a spinning spacecraft with dissipation using Lyapunov's method. Chaos, Solitons & Fractals, 13(9), 1857-1869.
Rubagotti, M., Estrada, A., Castanos, F., Ferrara, A., & Fridman, L. 2011. Integral sliding mode control for nonlinear systems with matched and unmatched perturbations. IEEE Transactions on Automatic Control, 56(11), 2699-2704.
Shen, Q., Wang, D., Zhu, S., & Poh, E. K. 2015. Integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft. IEEE Transactions on Control Systems Technology, 23(3), 1131-1138.
Utkin, V., Guldner, J., & Shi, J. 2009. Sliding mode control in electro-mechanical systems, 34. CRC press.
Utkin, V., & Shi, J. 1996. Integral sliding mode in systems operating under uncertainty conditions. Proceedings of the 35th IEEE Conference on Decision and Control, 4, 4591-4596.
Wang, Z., & Wu, Z. 2015. Nonlinear attitude control scheme with disturbance observer for flexible spacecrafts. Nonlinear Dynamics, 81(1-2), 257-264.
Wei, W. 2015. Synchronization of coupled chaotic Hindmarsh Rose neurons: An adaptive approach. Chinese Physics B, 24(10), 100503.
Xiao, B., Hu, Q., & Zhang, Y. 2012. Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Transactions on Control Systems Technology, 20(6), 1605-1612.
Yang G H, Wang J L, Soh Y C. 2001. Reliable H∞, controller design for linear systems. Automatica, 37(5): 717-725.
Yau, H. T., & Shieh, C. S. 2008. Chaos synchronization using fuzzy logic controller. Nonlinear analysis: Real world applications, 9(4), 1800-1810.
Zhang, Y., & Jiang, J. 2008. Bibliographical review on reconfigurable fault-tolerant control systems. Annual reviews in control, 32(2), 229-252.
Zhang, R., Qiao, J., Li, T., & Guo, L. 2014. Robust fault-tolerant control for flexible spacecraft against partial actuator failures. Nonlinear Dynamics, 76(3), 1753-1760.
Zolghadri, A. 2012. Advanced model-based FDIR techniques for aerospace systems: Today challenges and opportunities. Progress in Aerospace Sciences, 53, 18-29.