Prediction of burden descent speed in blast furnace based on extreme learning machine

  • Xin Guan Lingnan Normal University, Guangdong, Zhanjiang, China
  • Yixin Yin University of Science and Technology Beijing, China
  • Sen Zhang University of Science and Technology Beijing, China
  • Haigang Zhang University of Science and Technology Beijing, China
Keywords: Burden charging, blast furnace, descent speed, extreme learning machine.

Abstract

The burden charging is the most important operation of the upper operations in blast furnace. The position and descent speed of burden layer can reflect the situation of blast furnace and can guide the operators in the next burden charging. In this paper, the descent speed prediction model of burden layer is established by extreme learning machine algorithm. The model can make single-step and multi-step predictions to the burden descent speed using real radar data and status information in blast furnace. In the simulation part, we collected the real production data in iron-making process and obtained the satisfied and accurate simulation results by employing the proposed scheme.

References

C.H. Gao, L. Jian & S. H. Luo. 2012. Modeling of the Thermal State Change of Blast Furnace Hearth With

Support Vector Machines. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. 59(2):1134-

G. B. Huang. 2015. What are Extreme Learning Machines? Filling the Gap between Frank Rosenblatt’s

Dream and John von Neumann’s Puzzle. Cognitive Computation. 7(3): 263-278.

G. B. Huang, D. H. Wang & Y. Lan. 2011. Extreme learning machines: a survey. International Journal of

Machine Learning and Cybernetics. 2(2): 107 – 122.

G. B. Huang, H. Zhou, X. Ding & R. Zhang. 2012. Extreme learning machine for regression and multiclass

classification. IEEE Transactions on Systems Man & Cybernetics Society. 42(2): 513 – 529.

G. B. Huang, Q. Y. Zhu & C. K. Siew. 2006. Extreme learning machine: Theory and applications.

Neurocomputing, 70(1-3): 489 – 501.

G. Feng, G. B. Huang, Q. Lin & R. Gay. 2009. Error minimized extreme learning machine with growth

of hidden nodes and incremental learning. IEEE Transactions on Neural Networks, 20(8): 1352 – 1357.

H. SAXE’N & J. HINNELA. 2010. MODEL FORBURDENDISTRIBUTION TRACKING IN THE BLAST

FURNACE.Mineral Processing & Extractive Metallurgy Review.25(1):1-27.

J.D. Wei, X.Z. Chen, J. R. Kelly & Y.Z. Cui. 2015. Blast Furnace Stockline Measurement using Radar.

Ironmaking &Steelmaking,42(7): 533-541.

L.M. Liu, A. Wang, M. Sha, X.Y. Sun & Y.L. Li. 2011. Optional SVM for Fault Diagnosis of Blast Furnace

with Imbalanced Data. ISIJ International ,51(9): 1474-1479.

L. Jian & C. H. Gao. 2013. Binary Coding SVMs for the Multiclass Problem of Blast Furnace System. IEEE

Transactions on Industrial Electronics,60(9):3846-3856.

M. Ichida, T. Anan, M. Takao, K. Kakiuchi & Y. Morizane. 2007. Inner profile and burden descent

behavior in the blast furnace.Tianjin Metallurgy,142(4):46.

N. Y. Liang, G. B. Huang, P. Saratchandran & N. Sundararajan. 2006. A Fast and Accurate Online

Sequential Learning Algorithm for Feedforward Networks. IEEE Trans. Neural Networks,17(6): 1411

– 1423

R. S. NICK, A. TILLIANDER, T. L. I. JONSSON & P. G. JONSSON. 2013. Mathematical Model of Solid

Flow Behavior in a Real Dimension Blast Furnace. ISIJ International.53(6): 979-987.

S.H. Luo, J. Huang, J. Zeng & Q. Zhang. 2011. Identification of the Optimal Control Center for Blast

Furnace Thermal State Based on the Fuzzy C-means Clustering. ISIJ International, 51(10): 1668-1673.

S. Scardapane, D. Comminiello, M. Scarpiniti & A. Uncini. 2015. Online Sequential Extreme Learning

Machine With Kernels.IEEE Transaction on Neural Networks & Learning systems,26(9):2212-2220.

T. Mittal & R. K. Sharma. 2016. An improved SVM using predator prey optimization and Hooke-Jeeves

method for speech recognition. Journal of Engg. Research,4(1):1-20.

X.Z Chen, J.D. Wei, D. Xu, Q. W. Hou & Z. Bai. 2012. 3-Dimension Imaging System of Burden Surface

with 6-radars Array in a Blast Furnace. ISIJ International,52(11): 2048-2054.

Published
2018-01-29
Section
Electrical Engineering