
Xin Guan, Yixin Yin, Sen Zhang and Haigang Zhang121

التنب�ؤ ب�سرعة عبء الن�سب في فرن الانفجار

�إ�ستناداً �إلى �آلة التعلم المدقع

�شين قوان*، يي�شين يين**، �سين ت�شانغ** و هيجانغ ت�شانغ**

* كلية هند�سة المعلومات، جامعة لينغنان عادي، قوانغدونغ، ت�شانجيانغ 524048، ال�صين
** مدر�سة الأتمتة والهند�سة الكهربائية، جامعة العلوم والتكنولوجيا بكين، بكين 100083

الخـلا�صـة

عبء ال�شحن هو �أهم عملية من العمليات العليا في فرن ال�صهر. موقف و�سرعة طبقة عبء الن�سب يمكن 

�أن تعك�س حالة فرن الانفجار، ويمكن �أن توجه الم�شغلين للعبء المقبل لل�شحن.  في هذه الورقة، يتم ت�أ�سي�س 

يجعل  �أن  للنموذج  يمكن  المدقع.   التعلم  �آلة  خوارزمية  قبل  من  عبء  طبقة  بنموذج  للتنب�ؤ  الن�سبية  الن�سب 

التنب�ؤات خطوة واحدة ومتعددة الخطوات ل�سرعة عبء الن�سب با�ستخدام بيانات الرادار الحقيقي ومعلومات 

الحالة في فرن ال�صهر. في جزء المحاكاة، جمعنا بيانات الإنتاج الحقيقية في عملية �صنع الحديد، وح�صلنا على 

نتائج المحاكاة الدقيقة عن طريق ا�ستخدام المخطط المقترح.

Journal of Engg. Research Vol. 5 No. (4) December 2017 pp. 121-134



122Prediction of burden descent speed in blast furnace based on extreme learning machine

Prediction of burden descent speed in blast furnace based on extreme 
learning machine 

Xin Guan*, Yixin Yin**, Sen Zhang** and Haigang Zhang**
* School of Information Engineering, Lingnan Normal University, Guangdong, Zhanjiang 524048, China
**School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 
100083, China
Corresponding Author: zhangsen@ustb.edu.cn

ABSTRACT
The burden charging is the most important operation of the upper operations in blast furnace. 

The position and descent speed of burden layer can reflect the situation of blast furnace and 
can guide the operators in the next burden charging. In this paper, the descent speed prediction 
model of burden layer is established by extreme learning machine algorithm. The model can 
make single-step and multi-step predictions to the burden descent speed using real radar data and 
status information in blast furnace. In the simulation part, we collected the real production data in 
iron-making process and obtained the satisfied and accurate simulation results by employing the 
proposed scheme. 
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INTRODUCTION
The iron and steel industry is a pillar industry in China. The iron-making process in blast furnace 

(BF) is the first step in iron and steel industry (Liu, 2011). The BF smelting process, affected by 
a variety of external factors, is often operating in harsh environments. In addition, because of 
lack of inspection data, unclear mechanism, and inaccurate model, BF is a typical ‘black box’ 
system (Jian, 2013). The operation in iron-making process mainly relies on the experience of the 
operators, resulting in the fact that the BF is generally under ‘reasonable-deteriorative-reasonable’ 
repeated state. The burden charging operation is the upper part of BF operations. It is a prerequisite 
to the reasonable burden surface and descent speed of burden layer for the stable running of BF 
(Luo, 2011). The burden layer distribution is closely related to the gas flow distribution, the fuel 
ratio, the cohesive zone structure, and so on. The descent model of burden layer is the guidance for 
the operator to monitor the status of furnace condition and adjust next charging (Gao et al., 2012).

It is important to make guidance for the production of BF based on the prediction model 
of burden layer descent speed. The operators infer the descent speed of burden layer based on 
production experience and BF status indicators (as temperature, pressure, etc.), which makes the 
BF operation empirical and subjective. The mechanism model of burden layer descent has been a 
hot research topic in academia and industry. Nishio (2007) and Reza (2013) have established the 
descent model of burden layer, respectively, and presented that the descent speed of burden in the 
furnace center is 1.2~1.5 times the speed around the furnace wall. With the application of radar 
technology in the burden surface detection, data-driven technology has been applied in the descent 
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model of burden surface. Herik has established the BF burden layer distribution model based on 
single-point radar measurement system (Henrik & Njanhinnela, 2004). In the real BF production, 
compared to the monitor of descent speed of burden layer, it is more important to make prediction 
of the descent speed. Accurate speed prediction can help the operator monitor the status inside BF 
and present guidance to the lower part operation.

Extreme Learning Machine (ELM) algorithm is proposed subject to the single hidden layer 
neural networks (SLNNs) (Huang et al., 2006; Simone, 2015). Compared with other neural 
network algorithms, the learning parameters in ELM algorithm can be generated randomly, while 
the output weights can be obtained by the least squares estimation method (Huang et al., 2011). 
Since the weights of the hidden layer nodes do not need to be modified, ELM algorithm has fast 
training speed and can meet the needs of online implementation. Huang has proved the universal 
approximation capability of ELM model, which promotes the development of the theory of ELM 
algorithm (Huang et al., 2012). Nowadays, ELM algorithm has been successfully applied in many 
real world applications such as regression, classification and clustering, and so on ( Feng et al., 
2009). Meanwhile, there have been many ELM algorithm variants subject to different data forms. 
OS-ELM algorithm is the online sequential learning version based on ELM model. OS-ELM 
algorithm can well deal with cases when data arrive chunk-by-chunk (Liang et al., 2006). Here we 
employ ELM and OS-ELM algorithm in the decline model of the burden surface in BF. 

In this paper, the ELM algorithm is employed in the prediction model for burden descent in BF 
based on the real radar data. The industrial radar detection system for the burden layer position can 
calculate the descent speed. The prediction speed information will be submitted to the operators 
for the guidance to the next charging operation. The descent of burden layer can be reflected by 
the operating indexes of BF. We select some closely related production indexes as the prediction 
model inputs. In addition, taking into account the acquirement of online running of the prediction 
model, OS-ELM algorithm is employed in the multi-step prediction model for the burden descent.

The rest of this paper is organized as follows. Section 2 presents a review of the related works 
including the ordinary ELM and online ELM algorithms. In Section 3, we establish the descent 
speed prediction model of burden layer and the simulation results will be shown in Section 4. Then 
Section 5 is the conclusion of our work.

Extreme Learning Machine
ELM theory

Here we present a review of the state-of-the-art ELM algorithm and then we will discuss kernel 
ELM scheme.

Given a dataset containing  training samples,  

denotes an n-dimensional feature of the  sample and  denotes the 

corresponding desired output. The mathematical model of ELM with  hidden nodes and activation 
function  can be summarized as follows (Huang et al., 2006; Teena & Sharma, 2016): 

                                          
(1)
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where  and  are the learning parameters 
generated according to any continuous probability distribution randomly. Such nonlinear piecewise 
continuous function can be, but not limited to, (Huang, 2015)

(1) Sigmoid function:

                                  (2)

(2) Hard-limit function:

                               (3)

(3) Gaussian function:

                                  (4)

(4) Multiquadric function:

                                   (5)

Then the above  can be written in matrix form as

                                                                   (6)

where  called the hidden 

layer output matrix. According to the theory of least squares, the output weight  can be estimated as

                                                                  (7)

where  is the Moore-Penrose generalized inverse of  ( Henrik et al., 2004).

The model of ELM algorithm is presented in Figure 1, where one can see that ELM would 
map the input data into  -dimension space named ELM feature space (Huang, 2011). Huang and 
his colleagues have proved that ELM algorithm has the universal approximation capability; that 
is to say, ELM has the ability to approach any continuous target function. Hence, it is reasonable 
to do feature learning, clustering, regression, classification, and so on in ELM feature space. In 
addition, there are three types of feature maps: compressed feature representation for , 
equal dimension feature representation for , and spare feature representation for . 
In addition, we present the commonly used method to calculate the output weights through SVD 
method in the bottom right corner of Figure 1. In order to get rid of the puzzle of multicollinear 
problem, a regularization term  is added to the diagonal of  or .
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Figure 1. ELM model and ELM feature mapping.

The essence of ELM algorithm is the random weight selection of hidden nodes, which can 
make sure of the fast training speed. Huang has proved the universal approximation capability as 
shown in the following.

Universal approximation capability: given any bounded non-constant piecewise continuous 
function as the activation function in hidden neurons, if by tuning parameters of hidden 
neuron activation function SLFNs can approximate any target continuous function, then 
for any continuous target function  and any randomly generated function sequence 

,holds with probability one with appropriate 

output weights .

Online sequential ELM algorithm
As mentioned above, the training data may arrive chunk-by-chunk or one-by-one (a special 

case of chunk) in real applications. The OS-ELM algorithm aims at online learning cases and 
constantly updates the output weights within short time (Huang, 2006).

When a new chunk of sampling data comes, the mathematical model of ELM should be 
modified as

                                                         (8)

where  and  are the newly generated hidden layer output matrix using the previous 

learning parameters and output matrix consisting with newly obtained observations, and  is the 
modified output weight matrix.

There are two phases in OS-ELM algorithm, an initialization phase and a sequential phase. The 
initialization phase is the same as the ordinary ELM algorithm, while the output weight matrix  
will be updated in the sequential phase through an iterative way. The OS-ELM algorithm can be 
summarized as follows.
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Initialization phase: given a small chunk of training data to initialize the learning, 
 from the whole training set . Here it is worth 

noting that the number of chunks of training data required in the initialization phase  should be 
equal to or greater than the number of hidden nodes .

(1) Randomly assign the learning parameters  and .

(2) Calculating the initial hidden layer output matrix 

                               

(9)

(3) Calculating the initial output weight .

(4) Set , where  is the index representing the number of chunks of data presented to the 
network.

Sequential phase: given the  chunk of new observations,

 , where  represents 

the number of newly obtained observations  in the  chunk.

(1) Calculate the partial hidden layer output matrix 

                   (10)

(2) Calculate the output weight matrix 

      

                          (11)

(3)Set . Then return to (1) in this sequential learning phase.

Here one can see that (9) has an intuitive physical meaning. The new output weight matrix  

 is equal to the last estimation  added with a correction term , 

where  represents the estimation or forecast value of  . That is to say, the foundation 
of the correction term is the difference between the actual  output value  and its 
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estimation or forecast  based on  output weight estimation . And  is called 
weight matrix multiplied by the correction term.

Remark 1. It is necessary for  in the initialization phase of OS-ELM. Actually, we can 
remove this requirement after adding the regularized term in the calculation of output weights in 
the above analysis.  

Remark 2. The modified term (9) of output weight matrix is equal to that in the OS-ELM 
algorithm despite the fact that the author employed two equations to update the output weights 
in Jian & Gao (2013). Here we just want to highlight the idea of weights, and then the correction 

term  in (Jian & Gao, 2013) is modified to . 

A detailed derivation can refer to the following WOS-ELM algorithm.

PREDICTION MODEL FOR THE DESCENT OF BURDEN LAYER
The data in this study is obtained by the burden surface inspection system based on the industrial 

measurement radar developed by Chen et al. (2012.). Radar installation location and monitoring 
diagram are shown in Figures 2 and 3. 

Figure 2. Radar installation diagram.                         Figure 3. Radar detection coordinate.

Although the blast volume is large, there are many pieces of detection equipment installed on 
the top of BF, resulting in the fact that the installation area for the radar measurement system is 
limited (Wei & Chen, 2015). Figure 2 shows the installation locations of six radars. Considering the 
symmetrical feature of burden surface, we divide the surface into four loop regions (represented by 
four kinds of color). The radar cannot be installed in the shaded area. The four radars are mounted 
vertically above the four loop regions. Taking into account the importance of furnace center, the 
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remaining two radars are mounted aslant above the furnace center. Figure 3 presents the schematic 
diagram for a single radar monitoring. We have established a three-dimensional plot on the position 
of zero feed line.  is the distance from the radar installed position to the burden surface, which 
is also the initial detecting distance.  represents the distance from the projection point of radar 
installed position in the XOY plane to the coordinate origin.  is the vertical distance of the 
monitoring point.  represents the vertical distance from the throat of BF to the zero feed line, and 

, while  is the veridical distance between the radar installed position and the BF throat. 
Then one can calculate the radial and vertical distance of the monitoring point as follows:

                                           
(12)

where  is the radial distance. And  is the tilt angle of radar installation, which is known in 
advance.

Through the radar monitoring data, one can calculate the descent speed of burden layer as 
follows: 

                                                     
(13)

where  represents the descent speed monitored by the ith radar.  is the vertical distance at 
 time, while  represents the sampling interval.

One can reconstruct the burden line based on radar detection data. BF is a symmetrical 
production vessel. The shape of burden line can reflect burden layer distribution. In addition, the 
iron-making process is a complex, nonlinear and strong coupling. Deep interactions exist among 
BF operating condition indexes. There are many indexes related to the descent speed of burden 
layer closely. In the speed prediction model, we combine the real radar data with the operating 
status of BF. Based on the operating experience, we chose the BF condition indexes related to the 
burden descent speed presented in Table 1. 

Table 1. Blast furnace operating condition indexes.

Variable name Unit

Blast volume m3/min

Top temperature

Top pressure kPa

Pulverized coal injection ton

Oxygen enrichment percentage wt%

Blast pressure kPa

Gas permeability m3/min·kPa



Xin Guan, Yixin Yin, Sen Zhang and Haigang Zhang129

The BF production is a continuous process. Both the single-step and multi-step prediction 
models are important to the operation of BF. We establish the descent speed prediction model from 
the following two aspects.

(1) Signal-step prediction model: ELM algorithm is employed in the descent speed prediction 
model as

                             (14)

where we combine the last two descent speeds with the BF status indexes as the input variables. 
It is worth mentioning that the average descent speed is applied for the  and  radars above 
the center of BF.

(2) Multi-step prediction model: here the OS-ELM algorithm is employed in the multi-step 
speed prediction model as

                           (15)

where  and  are the estimations of the last two descent speed (the output of ELM 
algorithm).

SIMULATION RESULTS
This section presents the simulation results of our proposed scheme for the descent speed 

prediction of burden layer. Here we collect the real radar monitoring data and the status indexes 
of 2500 m3 BF. Figure 4 represents the real radar monitoring data. The No. 3 radar has slight 
change during charging operation, which means that the burden monitored by No. 3 radar is hardly 
dropped. The data of No. 5 and No. 6 radars change significantly. Figure 5 presents the descent 
speed monitored by 6 industrial radars. One can clearly know that the burden around the center of 
BF has the fastest descent speed, which is  times more than the descent speed of burden in 
other locations. Within the first 5 minutes, the burden drops quickly and then becomes leveling off.

Figure 4. The real radar data.
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Figure 5. The descent speed.

The production environment of iron-making process is very harsh, resulting in the fact that the 
collected data often contain noise. It is necessary to make denoising implementation for the inputs 
of prediction model in the data preprocessing stage. The delay phenomenon in BF production is 
very common. We make correlation analysis between the prediction model inputs with the burden 
surface and determine the delay times.

Parameter selection

Theoretically, the model can be trained more and more accurately with the increase in hidden 
node numbers in ELM algorithm. However, it will take more training time. Considering the number 
of inputs in our model and the demand of online prediction, we select 100 hidden nodes in ELM 
and OS-ELM models. There are two types of activation functions taken into consideration. 

(1) Sigmoidal additive activation function , where 
the input weights and biases are randomly generated from the range .

(2) Gaussian RBF activation function , where the centers are 
randomly generated from the range , and the impact widths  are chosen from the range 

.

All the simulations have been conducted in Matlab 7.8.0 (2009a) running on a desktop PC with 
AMD Athlon(tm) II X2 250 processor, 3.00-GHz CPU, and 2G RAM. All the simulation results 
are averaged 50 times.

Single-step prediction results

Here we present the simulation results of single prediction in Figure 6. The blue line marked 
by squares represents the real descent speed. The red line with circles shows the ELM output with 
RBF active function, while the green marked by forks represents the model output using sigmoid 
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function. Taking into account the little change of the descent speed monitored by No. 3 radar, we 
omit it in this simulation.

From Figure 6, one can see that the output of ELM algorithm can well track the actual descent 
speed. In contract, ELM algorithm with sigmoid nodes obtains more accurate and satisfied 
simulation results than those with RBF nodes. From Table 2, one can obtain the mean squares 
error (MSE) of ELM algorithm with sigmoid and RBF hidden nodes, which is the same as the 
above presentation.

Figure 6. Simulation result of single-step prediction.

Multi-step prediction results
OS-ELM algorithm is employed in the multi-step prediction model, where the estimation 

output of OS-ELM model is used in the next prediction as input. For simplicity, the data collected 
from No. 5 and No. 6 radars is employed in this simulation. We make the data arrive one-by-one, 
and the initial number of chunks of training data is set as 300. Based on the simulation results of 
ELM algorithm, the sigmoid active function is applied in the multi-step prediction model. Figure 
7 presents the multi-step prediction results, where one can see that OS-ELM algorithm can well 
track the change of descent speed in the first 7 steps (in the left side of green line). From Table 2, 
one can see the MSE of OS-ELM output, which is less than that of the ELM model.
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Figure 7. Simulation result of multi-step prediction.

Table 2. The comparison results.

Algorithm Parameters Training time MSE
SVR (C,γ)  #SVs 0.1721 0.131

(20,0.25)  
BP

#nodes

100 4.0093 0.112
ELM-RBF 100 0.0098 0.087

ELM-Sigmoid 100 0.0045 0.080
OS-ELM-Sigmoid 100 0.0101 0.072

Comparison results
In order to test the performance of ELM algorithm, we compare it with other famous algorithms, 

such as SVM and BP. The simulation results are presented in Table 2. ELM algorithm can obtain 
more satisfied and accurate results compared with SVM and BP methods with the least training 
time. The performance of OS-ELM algorithm is better than that of the ELM algorithm, despite a 
little more training time.  
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CONCLUSIONS
The descent speed of burden layer in BF is important for the operation of next charging. In 

this paper, we establish the single- and multi-step prediction model for the descent speed. The 
actual industrial radar monitoring data and the operating condition information are employed in 
the prediction model. In the simulation experiments, we collect the actual operating data from 

 BF. The simulation results have verified the satisfied performance of the proposed 
scheme. In addition, ELM and OS-ELM algorithms are compared with SVM and BP algorithms, 
and they obtained more accurate results.
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