Local scour protection using geocell for downstream of spillway

Abstract

Local scour is an important problem for hydraulic structures. The local scour in the downstream of the dams cause problems such as the damage of the dam body stabilization, erosion of the slopes and the submergence of the turbines. There are many studies investigating the local scour predict of the downstream of the hydraulic structures but in recent years, these studies have been replaced by studies of local scour reduction. The new idea of confining the bed materials using the geocell is becoming popular solution. This solution can be especially use for the reinforcement of the soils. In this study, the preventability of the local scour downstream of chute channel by cellular confinement system, also known as geocell was investigated. As a result, in case of using geocell, percentage reduction of the maximum scour depth up to 40.63% was observed.

References

Amini, N., Balouchi, B., & Bejestan, M. S. 2017. Reduction of local scour at river confluences using a collar. International Journal of Sediment Research, 32(3): 364-372.

Balachandar, R., Kells, J. A., & Thiessen, R. J. 2000. The effect of tailwater depth on the dynamics of local scour. Canadian Journal of Civil Engineering, 27(1): 138-150.

Ben Meftah, M., & Mossa, M. 2006. Scour holes downstream of bed sills in low-gradient channels. Journal of Hydraulic Research, 44(4): 497-509.

Bejestan, M. S., Khademi, K., & Kozeymehnezhad, H. 2015. Submerged vane-attached to the abutment as scour countermeasure. Ain Shams Engineering Journal, 6(3): 775-783.

Borghei, S. M., & Sahebari, A. J. 2010. Local scour at open-channel junctions. Journal of Hydraulic Research, 48(4): 538-542.

Caltrans - State of California Department of Transportation 2006 Cellular Confinement System Research. Report CTSW-RT-06-137.20.1.

Champagne, T. M., Barkdoll, B. D., & González-Castro, J. A. 2017. Experimental Study of Scour Induced by Temporally Oscillating Hydraulic Jump in a Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(12): 04017051.

Coleman, S. E., Lauchlan, C. S., & Melville, B. W. 2003. Clear-water scour development at bridge abutments. Journal of Hydraulic Research, 41(5): 521-531.

Grimaldi, C., Gaudio, R., Calomino, F., & Cardoso, A. H. 2009. Countermeasures against local scouring at bridge piers: slot and combined system of slot and bed sill. Journal of Hydraulic Engineering, 135(5): 425-431.

Farhoudi, J., & Shayan, H. K. 2014. Investigation on local scour downstream of adverse stilling basins. Ain Shams Engineering Journal, 5(2): 361-375.

Hamidifar, H., Nasrabadi, M., & Omid, M. H. 2017. Using a bed sill as a scour countermeasure downstream of an apron. Ain Shams Engineering Journal. 9 (4): 1663-1669.

He, C., & Marsalek, J. 2013. Enhancing sedimentation and trapping sediment with a bottom grid structure. Journal of environmental engineering, 140(1): 21-29.

He, C., Post, Y., Rochfort, Q., & Marsalek, J. 2014. Field study of an innovative sediment capture device: bottom grid structure. Water, Air, & Soil Pollution, 225(6): 1976.

Heibaum, M. H. 2000. Scour countermeasures using geosynthetics and partially grouted riprap. Transportation research record, 1696(1): 244-250.

Hoffmans, G. J., & Pilarczyk, K. W. 1995. Local scour downstream of hydraulic structures. Journal of Hydraulic Engineering, 121(4): 326-340.

Khosravinia, P., Malekpour, A., Hosseinzadehdalir, A., & Farsadizadeh, D. 2018. Effect of trapezoidal collars as a scour countermeasure around wing-wall abutments. Water Science and Engineering, 11(1): 53-60.

Kim, U. Y., Park, H., & Yoo, K. H. 2000. Local scour countermeasure around bridge piers. WIT Transactions on Ecology and the Environment, 45.

Koochak, P., & Bajestan, M. S. 2016. The effect of relative surface roughness on scour dimensions at the edge of horizontal apron. International Journal of Sediment Research, 31(2): 159-163.

Korkut, R., Martinez, E. J., Morales, R., Ettema, R., & Barkdoll, B. 2007. Geobag performance as scour countermeasure for bridge abutments. Journal of Hydraulic Engineering, 133(4): 431-439.

Li, H., Barkdoll, B. D., Kuhnle, R., & Alonso, C. 2006. Parallel walls as an abutment scour countermeasure. Journal of Hydraulic Engineering, 132(5): 510-520.

Li, H., Barkdoll, B., & Kuhnle, R. 2005. Bridge abutment collar as a scour countermeasure. In Impacts of Global Climate Change (pp. 1-12).

Mason, P. J., & Arumugam, K. 1985. Free jet scour below dams and flip buckets. Journal of Hydraulic Engineering, 111(2): 220-235.

Nik Hassan, N. M. K., & Narayanan, R. 1985. Local scour downstream of an apron. Journal of Hydraulic Engineering, 111(11): 1371-1384.

Oliveto, G., & Comuniello, V. 2009. Local scour downstream of positive-step stilling basins. Journal of Hydraulic Engineering, 135(10): 846-851.

Pagliara, S., Palermo, M., & Carnacina, I. 2011. Scour process due to symmetric dam spillways crossing jets. Intl. J. River Basin Management, 9(1): 31-42.

Palermo, M., & Pagliara, S. 2018. Effect of unsteady flow conditions on scour features at low-head hydraulic structures. Journal of Hydro-environment Research, 19: 168-178.

Radice, A., & Davari, V. 2014. Roughening elements as abutment scour countermeasures. Journal of Hydraulic Engineering, 140(8): 06014014.

Simpson, T., Wang, J., & Vasconcelos, J. G. 2018. Cellular Confinement Systems to Prevent Resuspension in Sediment Basins. Journal of Environmental Engineering, 144(5): 04018024.

Tuna, M. C., & Emiroglu, M. E. 2011. Scour profiles at downstream of cascades. Scientia Iranica, 18(3): 338-347.

Yun, D. H., & Kim, Y. T. 2018. Experimental study on settlement and scour characteristics of artificial reef with different reinforcement type and soil type. Geotextiles and Geomembranes, 46(4): 448-454.

Zarrati, A. R., Chamani, M. R., Shafaie, A., & Latifi, M. 2010. Scour countermeasures for cylindrical piers using riprap and combination of collar and riprap. International Journal of Sediment Research, 25(3): 313-322.

Published
2021-09-02