Study of Total Instantaneous Friction Torque of a Compression Ignition (CI) engine - A numerical and experimental approach.

  • Mohamed SEDDAK Department of Mechanical Engineering, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf , USTO-MB, BP 1505 El M'naouer, 31000 Oran, Algérie. Laboratoire de recherche en Technologies de l'Environnement, Ecole Nationale Polytechnique d’Oran Maurice Audin, Oran, Algérie.
  • Amina Assia LAKHDARI Department of Mechanical Engineering, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf , USTO-MB, BP 1505 El M'naouer, 31000 Oran, Algérie.

Abstract

Under the pressure of stricter regulations on pollutant emissions, users seeking better fuel economy and better driving comfort, the control of the engine based on the torque were developed. To be able to provide an accurate estimate of the effective torque, friction losses must be modeled. The details of a model that predicts the total instantaneous friction torque for compression ignition engines are described. The model, based on a combination between the dynamic model of the crankshaft and the thermodynamic model. The total instantaneous friction torque is determined, via the instantaneous measurements or numerical predictions of the gas pressure in the combustion chamber, the speed of rotation of the crankshaft and load torque. The experimental data and the results of the numerical simulation have been compared. The comparison between the different variables shows a good agreement between the simulation and the experimental results.

References

S. Furuhama, and S. Sasaki. New Device for the Measurement of Piston Frictional Forces in Small Engines, SAE Technical Paper 831284, 1983. DOI 10.4271/831284.

J. B. Heywood. Internal Combustion Engine Fundamentals (McGraw-Hill series in mechanical engineering), 1988.

W. Ball, N. Jackson, A. Pilley, and B. Porter. The Friction of a 1.6 Litre Automotive Engine-Gasoline and Diesel. SAE Technical Paper 860418, 1986. DOI 10.4271/860418.

R. Paranjpe and A. Cusenza. FLARE: An Integrated Software Package for Friction and Lubrication Analysis of Automotive Engines - Part II: Experimental Validation, SAE Technical Paper 920488, 1992. DOI 10.4271/920488.

E. Ciulli, G. Rizzoni and J. Dawson. Numerical and Experimental Study of Friction on a Single Cylinder CFR Engine, SAE Technical Paper 960357, 1996. DOI 10.4271/960357.

D. Kouremenos, C. Rakopoulos, D. Hountalas and T. Zannis. Development of a Detailed Friction Model to Predict Mechanical Losses at Elevated Maximum Combustion Pressures, SAE Technical Paper 2001-01-0333, 2001. DOI 10.4271/2001-01-0333.

R. Thring. Engine Friction Modeling, SAE Technical Paper 920482, 1992. DOI 10.4271/920482.

A. Miura and K. Shiraishi. Investigation of Main Bearing Friction in a Diesel Engine, SAE Technical Paper 890140, 1989. DOI 10.4271/890140.

D.K. Leong. Investigations of Friction Losses in Automotive Internal Combustion Engines. PhD Thesis, University of Nottingham, 2004.

D. Luff, K. Y. Cheng , D. Leong, T. Law, P.J. Shayler. Diesel Engine Cold Start - Progress Report 47. 2003. ME EG: DCS47/03.

N. J. Owen, I.P. Gilbert, N.S. Jackson. Firing Friction Breakdown of a Ford 1.8L IDI Diesel Engine. Ricardo, 1989.

G. Livanos and N. Kyrtatos. A Model of the Friction Losses in Diesel Engines, SAE Technical Paper 2006-01-0888, 2006. DOI 10.4271/2006-01-0888.

H. Hirani, K. Athre and S. Biswas. Dynamically Loaded Finite Length Journal Bearings: Analytical Method of Solution. ASME Journal of Tribology, vol. 121 (4), pp. 844-852, 1999.

DOI 10.1115/1.2834144

Y. H. Zweiri, J.F. Whidborne and L.D. Seneviratne. Instantaneous friction components model for transient engine operation. Proc. Inst. Mech. Engrs., Journal of Automobile Engineering, Vol. 214, 1999.

Q. Ma, S.S.V. Rajagopalan, S. Yurkovich, Y.G. Guezenec, A High Fidelity Starter Model for Engine Start Simulations. American Control Conference, pp.4423-4427, Portland 2005.

E. Ciulli. A Review of Internal Combustion Engine Losses - Part 1: Specific Studies on the Motion of Pistons, Valves and Bearings. Proc. Instn. Mech. Engrs., Part D, Journal of Automobile Engineering. No. 206, pp223-236, 1992.

I. Bishop, Effect of Design Variables on Friction and Economy, SAE Technical Paper 640807, 1964. DOI 10.4271/640807.

K. Patton, R. Nitschke and J.B. Heywood. Development and Evaluation of a Friction Model for Spark-Ignition Engines, SAE Technical Paper 890836, 1989. 10.4271/890836.

D. Sandoval and J.B. Heywood. An Improved Friction Model for Spark-Ignition Engines, SAE Technical Paper 2003-01-0725, 2003. DOI 10.4271/2003-01-0725.

P. J. Shayler, D.K. Leong and M. Murphy. Friction Teardown Data from Motored Engine Tests in Light Duty Automotive Diesel Engines at Low Temperatures and Speeds. ASME Fall Technical Conference, Erie, 2003.

R. Iserman. Engine Modeling and Control: Modeling and Electronic Management of Internal Combustion Engines. Springer, Berlin, 2014. DOI 10.1007/978-3-642-39934-3.

A. Sakhrieh, E. Abu-Nada, I. Al-Hinti, A. Al-Ghandoor, B. Akash. Computational thermodynamic analysis of compression ignition engine. Int. Commun. Heat Mass Transf. 37, 299–303,2010. DOI 10.1016/j.icheatmasstransfer.2009.11.002.

C. Ferguson, A. Kirkpatrick. Internal Combustion Engines: Applied Thermosciences. Wiley, New York, 2001.

W. Pulkrabek. Engineering Fundamentals of the Internal Combustion Engine, 2nd edn. Pearson Prentice-Hall, Upper Saddle River, 2004.

R. Sonntag, C. Borgnakke and G. VanWylen. Fundamentals of Thermodynamics, 5th edn. Wiley, New York, 1998.

U. Kiencke, L. Nielsen, Automotive Control Systems for Engine, Driveline and Vehicle. Springer, London, 2000.

S. Schagerberg. Torque Sensors for Engine Applications. Lic thesis 472L. Chalmers University of Technology, 2003.

C.D. Rakopoulos, E.G. Giakoumis. Diesel Engine Transient Operation: Principles of Operation and Simulation Analysis. Springer, London, 2009. DOI 10.1007/978-1-84882-375-4

C.D. Rakopoulos, E.G. Giakoumis. Simulation and analysis of a naturally aspirated IDI Diesel engine under transient conditions comprising the effect of various dynamic and thermodynamic parameters. Energy Convers. Mgmt Vol. 39, No. 5/6, pp. 465-484, 1998.

DOI 10.1016/S0196-8904(96)00233-6.

M. Seddak and A. Liazid. An Experimental Study on Engine Dynamics Model Based on Indicated Torque Estimation. Arab J Sci Eng (2018) 43: 1475. DOI 10.1007/s13369-017-2970-8.

Published
2021-09-21
Section
Mechanical Engineering (2)