Crystallite Size on Micromechanical Characteristics of WO3 Microparticles

  • Asep Bayu Dani Nandiyanto Universitas Pendidikan Indonesia


This study evaluated the correlation between crystallite size and micromechanical characteristics of micrometer-sized monoclinic WO3 particles. To avoid the existence of other parameters in the measurement (such as impurities and porous structure in the particle), micrometer WO3 particles were prepared using a direct heat treatment of ultrapure micrometer-sized ammonium tungstate powders. The crystallite size was controlled independently in a constant WO3 particle outer diameters to obtain a precise measurement result. The mechanical properties, i.e., hardness and Young’s modulus, were measured by load-controlled nanoindentation test on the singular WO3 particles. The force and displacement relationship data was plotted and analyzed to obtain the correlation between crystallite size and mechanical properties. The results revealed that the micro-mechanical properties of WO3 particles were strongly dependent on the crystallite size. The hardness and Young’s modulus values increased more than 40 and 15 times, respectively, when increasing the crystallite size to about 40 nm. The study was completed with a proposed mechanism of crack propagation inside the particle due to static load. The study demonstrates the important role of crystallite size in determining the micro-mechanical characteristics of WO3 particles. The result is useful especially when utilizing WO3 microparticles for various processes involving extreme conditions, such as high pressure reaction.


Abadias, G., Dub, S. & Shmegera, R. 2006. Nanoindentation hardness and structure of ion beam sputtered TiN, W and TiN/W multilayer hard coatings. Surface and coatings technology 200(22-23): 6538-6543.

Aloraier, A., Al-Fadhalah, K., Paradowska, A.M. & Alfaraj, E. 2014. Effect of welding polarity on bead geometry, microstructure, microhardness, and residual stresses of 1020 steel. Journal of Engineering Research 4(2): 1-24.

Arutanti, O., Nandiyanto, A.B.D., Ogi, T., Iskandar, F., Kim, T.O. & Okuyama, K. 2014a. Synthesis of composite WO3/TiO2 nanoparticles by flame-assisted spray pyrolysis and their photocatalytic activity. Journal of alloys and compounds 591: 121-126.

Arutanti, O., Ogi, T., Nandiyanto, A.B.D., Iskandar, F. & Okuyama, K. 2014b. Controllable crystallite and particle sizes of WO3 particles prepared by a spray‐pyrolysis method and their photocatalytic activity. AIChE Journal 60(1): 41-49.

Boyd, R.H. 1985. Relaxation processes in crystalline polymers: experimental behaviour—a review. Polymer 26(3): 323-347.

Budiman, B.A., Triawan, F., Adziman, F. & Nurprasetio, I.P. 2017. Modeling of stress transfer behavior in fiber-matrix composite under axial and transverse loadings. Composite Interfaces 24(7): 677-690.

Budiman, B.A., Adziman, F., Sambegoro, P.L., Nurprasetio, I.P., Ilhamsyah, R. & Aziz, M. 2018. The Role of Interfacial Rigidity to Crack Propagation Path in Fiber Reinforced Polymer Composite. Fibers and Polymers 19(9): 1980-1988.

Fischer-Cripps, A.C. 2006. Critical review of analysis and interpretation of nanoindentation test data. Surface and coatings technology 200(14-15): 4153-4165.

Hasan, M., Haseeb, A. & Masjuki, H. 2012. Structural and mechanical properties of nanostructured tungsten oxide thin films. Surface Engineering 28(10): 778-785.

Inoue, K., Triawan, F., Inaba, K., Kishimoto, K., Nishi, M., Sekiya, M., Sekido, K. & Saitoh, A. 2019. Evaluation of interfacial strength of multilayer thin films polymer by nanoindentation technique. Mechanical Engineering Journal 6(1): 18-00326-18-00326.

Kumar, R. & Münstedt, H. 2005. Polyamide/silver antimicrobials: effect of crystallinity on the silver ion release. Polymer International 54(8): 1180-1186.

Lee, J.G., Lee, D.-G., Lee, S., Cho, K.-m., Park, I. & Kim, N.J. 2005. Effects of crystalline particles on mechanical properties of strip-cast Zr-base bulk amorphous alloy. Materials Science and Engineering: A 390(1-2): 427-436.

Lei, S., Cao, Q., Geng, X., Yang, Y., Liu, S. & Peng, Q. 2018. The Mechanical Properties of Defective Graphyne. Crystals 8(12): 465.

Li, X. & Bhushan, B. 2002. A review of nanoindentation continuous stiffness measurement technique and its applications. Materials characterization 48(1): 11-36.

Liu, X., Yuan, F. & Wei, Y. 2013. Grain size effect on the hardness of nanocrystal measured by the nanosize indenter. Applied Surface Science 279: 159-166.

Maillé, L., Sant, C., Aubert, P. & Garnier, P. 2005. Morphological and mechanical properties study of [WO3/W] n nanoscale multilayers. Thin Solid Films 479(1-2): 201-206.

Masterson, V.M. & Cao, X. 2008. Evaluating particle hardness of pharmaceutical solids using AFM nanoindentation. International journal of pharmaceutics 362(1-2): 163-171.

Mohamed, A., Alkhaledi, K. & Cochran, D. 2014. Estimation of mechanical properties of soft tissue subjected to dynamic impact. Journal of Engineering Research 4(2): 1-15.

Muhammad, M., Siddiqui, M.A. & Muhammad, S. 2017. Experimental investigation and optimization of process parameters for through induction hardening using factorial design of experiments. Journal of Engineering Research 5(3): 174-185.

Nandiyanto, A.B.D., Arutanti, O., Ogi, T., Iskandar, F., Kim, T.O. & Okuyama, K. 2013. Synthesis of spherical macroporous WO3 particles and their high photocatalytic performance. Chemical engineering science 101: 523-532.

Nandiyanto, A.B.D., Munawaroh, H.S.H., Kurniawan, T. & Mudzakir, A. 2016. Influences of temperature on the conversion of ammonium tungstate pentahydrate to tungsten oxide particles with controllable sizes, crystallinities, and physical properties. Indonesian journal of chemistry 16(2): 124-129.

Nandiyanto, A.B.D., Zaen, R. & Oktiani, R. 2017. Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles. Arabian Journal of Chemistry: in press.

Nandiyanto, A.B.D., Oktiani, R., Ragadhita, R., Sukmafitri, A. & Zaen, R. 2018. Amorphous content on the photocatalytic performance of micrometer-sized tungsten trioxide particles. Arabian Journal of Chemistry: in press.

Nandiyanto, A.B.D., Triawan, F., Firly, R., Abdullah, A.G., Aono, Y., Inaba, K. & Kishimoto, K. 2019. Identification of micro-mechanical characteristics of monoclinic tungsten trioxide microparticles by nanoindentation technique. Materials Physics and Mechanics: in press.

Olivas, E., Swadener, J. & Shen, Y.-L. 2006. Nanoindentation measurement of surface residual stresses in particle-reinforced metal matrix composites. Scripta Materialia 54(2): 263-268.

Parreira, N., Carvalho, N. & Cavaleiro, A. 2006. Synthesis, structural and mechanical characterization of sputtered tungsten oxide coatings. Thin Solid Films 510(1-2): 191-196.

Sangid, M.D., Maier, H.J. & Sehitoglu, H. 2011. The role of grain boundaries on fatigue crack initiation–an energy approach. International Journal of Plasticity 27(5): 801-821.

Şimşek, B. & Uygunoğlu, T. 2018. A design of experiment application to improve raw materials utilization ratio of polymer concrete composites. Journal of Engineering Research 5(4): 1-18.

Taylor, L., Papadopoulos, D., Dunn, P., Bentham, A., Mitchell, J. & Snowden, M. 2004. Mechanical characterisation of powders using nanoindentation. Powder Technology 143: 179-185.

Willems, G., Celis, J.-P., Lambrechts, P., Braem, M. & Vanherle, G. 1993. Hardness and Young's modulus determined by nanoindentation technique of filler particles of dental restorative materials compared with human enamel. Journal of biomedical materials research 27(6): 747-755.

Zhai, T.-g., Wilkinson, A. & Martin, J. 2000. A crystallographic mechanism for fatigue crack propagation through grain boundaries. Acta materialia 48(20): 4917-4927.

Mechanical Engineering