Design of arm exercises for rehabilitation assistance

  • Betsy Dayana Marcela Chaparro-Rico IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli (IS), Italy http://orcid.org/0000-0002-6874-2508
  • Daniele Cafolla IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli (IS), Italy http://orcid.org/0000-0002-5602-1519
  • Eduardo Castillo-Castaneda Instituto Politécnico Nacional–CICATA Querétaro, Cerro Blanco 141, Colinas del Cimatario, 76090 Santiago de Queretaro, Mexico
  • Marco Ceccarelli University of Rome Tor Vergata, Via Cracovia, 50, 00133 Rome, Italy

Abstract

This paper presents the design and testing of arm exercises for rehabilitation assistance. The description of the human arm is presented together with the arm motion impairments. The motion planning for four arm exercises and the experimental procedure for data collection are described. A procedure to generate reference trajectories by regression analysis is explained. The procedure is numerically validated to prove the successfully generation of a representative trajectory for a set of trajectory samples. References trajectories are generated using the proposed procedure for four arm exercises through trajectory samples acquired from 12 subjects. The obtained reference trajectories can be used for rehabilitation assisting the traditional therapies using an automatized device.

References

Billard, A., Epars, Y., Calinon, S., Schaal, S. & Cheng, G. 2004. Discovering optimal imitation strategies. Robotics and

Autonomous systems. 47(2-3): 69–77.

Billard, A., Calinon, S., Dillmann, R. & Schaal. 2008. Robot programming by demonstration. In: Bruno Siciliano & Oussama

Khatib (Eds.). Handbook of Robotics. Pp. 1371-1394. Springer, Würzburg.

Bishop, C.M. 2006. Pattern Recognition and Machine Learning. Springer. Singapore. Pp. 563-565.

Calinon, S., D’halluin, F., Sauser, E.L., Caldwell, D.G. & Billard A.G. 2010. Learning and reproduction of gestures by imitation:

An approach based on hidden Markov model and Gaussian mixture regression. IEEE Robotics & Automation Magazine.

(2): 44-54.

Chaparro-Rico, B.D.M., Castillo-Castaneda, E. & Maldonado-Echegoyen, R. 2015. Design of a Parallel Mechanism for Knee

Rehabilitation. In: Ceccarelli M., Hernández Martinez E. (eds). Multibody Mechatronic Systems. Mechanisms and Machine

Science 25. Pp. 501-510. Springer, Cham.

Chaparro-Rico, B., Cafolla D., Ceccarelli, M. & Castillo-Castaneda, E. 2017. Design and Simulation of an Assisting Mechanism

for Arm Exercises. In: Boschetti G., Gasparetto A. (eds), Advances in Italian Mechanism Science. Mechanisms and Machine

Science 47. Pp. 115-123. Springer, Cham.

Chaparro-Rico, B.D.M, Cafolla D., Ceccarelli, M. & Castillo-Castaneda, E. 2018. Experimental Characterization of NURSE,

a Device for Arm Motion Guidance. Journal of Healthcare Engineering. 2018: 1-15. Article ID 9303282.

Chaparro-Rico, B.D.M, Cafolla, D., Ceccarelli, M., & Castillo-Castaneda, E. 2020. NURSE-2 DoF Device for Arm Motion

Guidance: Kinematic, Dynamic, and FEM Analysis. Applied Sciences. 2020: 10(6), 2139; https://doi.org/10.3390/

app10062139

Chatzis, S., Korkinof, D. & Demiris, Y. 2012. A Quantum-Statistical Approach Toward Robot Learning by demonstration. IEEE

Transactions on Robotics. 28(6): 1371-1381.

Corona-Acosta, I.P. & Castillo-Castaneda E. 2015. Dimensional Synthesis of a Planar Parallel Manipulator Applied to Upper

Limb Rehabilitation. In: Ceccarelli M., Hernández Martinez E, editors. Multibody Mechatronic Systems. Mechanisms and

Machine Science 25. Pp. 443-452. Springer, Cham.

Corona-Acosta, I. 2015. Development of a Mechatronic Device for Rehabilitation of Upper Extremity (shoulder, elbow, wrist).

Instituto Politécnico Nacional, Queretaro. Pp. 21.

Delson, N. & West, H. 1996. Robot Programming by Human Demonstration: Adaptation and Inconsistency in Constrained Motion.

Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Minneapolis, MN. 1: 30-36.

Ijspeert, J. A., Nakanishi, J. & Schaal, S. 2001. Trajectory Formation for imitation whit non-linear dynamical systems. Proceedings

of the 2001 IEEE/RSJ International Conference on Intelligent Robots and systems. Maui, HI. 2: 752-757.

Ju, M.S., Lin, C.C.K., Lin, D.H., Hwang, I.S. & Chen, S.M. 2005. A rehabilitation robot with force–position hybrid fuzzy

controller: hybrid fuzzy control of rehabilitation robot. IEEE transactions on neural systems and rehabilitation engineering.

(3): 349-358.

Kapandji, I. 2008. The physiology of the joints: The upper limb. 6th ed. Churchill Livingstone, New York. 1: 4-102.

Koopman, B., van Asseldonk E.H.F. & van der Kooij, H. 2014. Speed-dependent reference joint trajectory generation for robotic

gait support. Journal of Biomechanics 47: 1447-1458.

Martin, P. & Reza-Emami, M. 2014. A neuro-fuzzy approach to real-time trajectory generation for robotic rehabilitation. Robotics

and Autonomous Systems 62: 568-578.

Nef, T. & Riener, R. 2005. ARMin-Design of a Novel Arm Rehabilitation Robot. Proceedings of the 2005 IEEE 9th International

Conference on Rehabilitation Robotics. Chicago, USA. Pp. 57-60.

Varela, M.J., Ceccarelli, M. & Flores, P. 2015. A kinematic characterization of human walking by using CaTraSys. Machine and

Machine Theory journal 86: 125-139.

Vijayakumar, S. & Schaal, S. 2000. Locally Weighted Projection Regression: An on Algorithm for Incremental Real Time

Learning in High Dimensional Spaces. Proceedings in International Conference on Machine Learning (ICML). Stanford,

CA. Pp. 288-293.

Zadravec, M. & Matjačić, Z. 2013. Planar arm movement trajectory formation: An optimization-based simulation study.

Biocybernetics and Biomedical Engineering 33: 106-117.

Published
2020-08-13
Section
Mechanical Engineering