Enhancement of nano hybrid PES-nano silica performance for CO2/CH4 separation through combined UV irradiation and thermal annealing treatments

  • Tutuk Djoko Kusworo Department of Chemical Engineering Faculty of Engineering University of Diponegoro
  • B Budiyono Department of Chemical Engineering Faculty of Engineering University of Diponegoro
  • andri Cahyo Kumoro Department of Chemical Engineering Faculty of Engineering University of Diponegoro
  • Q Qudratun 2Nano Center Indonesia, South Tangerang, Indonesia
  • Bastian Widodo Department of Chemical Engineering Faculty of Engineering University of Diponegoro
  • Bilal Teguh Prabowo Department of Chemical Engineering Faculty of Engineering University of Diponegoro
  • dani puji Utomo Department of Chemical Engineering Faculty of Engineering University of Diponegoro
Keywords: Nano hybrid, nanosilica, biomethane, UV irradiation, thermal annealing


Energy supply has been one of the world’s main problems. Thus, the development of new energy and renewable energy resources can be a promising solution. As one of the promising energies from biomass is bio-methane obtained from biogas purification. Membrane separation is a potential technology for biogas purification processes. However, it still needs further improvements. The current study is to investigate the effect of UV irradiation and thermal annealing of nanohybrid PES-nano silica membrane and the effect of combined UV irradiation and thermal annealing on the CO2/CH4 separation performance. The nano hybrid PES-nanosilica membrane was fabricated by preparing the dope solution containing PES, NMP, and nanosilica. The membrane was casted using NIPS method and subsequently modified with UV and thermal annealing treatments. UV irradiation and thermal annealing treatments increased the selectivity and permeability of membrane in CO2/CH4 gas separation. Indeed, as the UV irradiation and thermal annealing time span increased, the membrane performance for CO2/CH4 separation also improved. The treatments modified nano hybrid membrane’s layer density and finally improved the membrane separation properties. The combination of UV irradiation and thermal annealing treatments significantly enhanced nanohybrid PES-nano silica performance for CO2/CH4 separation.


Adib, H., Hassanajili, S., Mowla, D., and Emaeilzadeh, F.J., (2015). Fabrication of integrally skinned asymmetric membranes based on nanocomposite polyethersulfone by supercritical CO2 for gas separation. Supercrit. Fluids. 97, 6-15.

Ahn, J., Chung, W. J., Pinnau, I., & Guiver, M. D. (2008). Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. Journal of Membrane science, 314(1), 123-133.

Ansaloni, L., Minelli, M., Baschetti, M. G., & Sarti, G. C. (2015). Effects of thermal treatment and physical aging on the gas transport properties in matrimid®. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 70(2), 367-379.

Ayral, A., Julbe, A., Rouessac, V., Roualdes, S., & Durand, J. (2008). Microporous silica membrane: basic principles and recent advances. Membrane science and technology, 13, 33-79.

Azhari, M.A., Nooririnah, O., and Ismail, A.F., (2016). Effect of progressive heating on CO2/CH4 separation using assymetric hollow fiber polysulfone membrane. Journal of Engineering and Applied Science. 11, 1958-1961.

Belfer, S., Fainchtain, R., Purinson, Y., & Kedem, O. (2000). Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. Journal of Membrane Science, 172(1), 113-124.

Chung, T.S., Jiang, L.Y., Li, Y., and Kulprathipanja, S., (2007). Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress Polymer Science, 32, 483-507.

Dong, G., Li, H., and Chen, V., (2011). Plasticization mechanisms and effects of thermal annealing of Matrimid hollow fiber membranes for CO2 removal. Journal Membrane Science. 369, 206 – 220.

Homayoonfal, M., Akbari, A., and Mehrnia, M.R., (2010). Preparation of polysulfone nanofiltration membranes by UV-assisted grafting polymerization for water softening. Desalination, 263, 217-225.

Hibshman, C., Cornelius, C.J., and Marand, E., (2003). The gas separation effects of annealing polyimide–organosilicate hybrid membranes. Journal Membrane Science. 211, 25-40.

Ismail, N. H., Salleh, W. N. W., Sazali, N., & Ismail, A. F. (2015). The effect of polymer composition on CO2/CH4 separation of supported carbon membrane. Chemical Engineering, 45.

Ismail, A.F., Kusworo, T.D., and Mustafa, A., (2008). Enhanced gas permeation performance of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent. Journal Membrane Science. 319, 306 – 312.

Ismail, A.F. and Kusworo, T.D., (2007). Fabrication and characterization of polyimide/polyethersulfone-fumed silica mixed matrix membrane for gas separation. Jurnal Reaktor. 11, 30 – 37.

Kapantaidakis, G., Koops, G., and Wessling, M., (2002). Preparation and characterization of gas separation hollow fiber membranes based on polyethersulfone-polyimide miscible blends. Desalination. 145, 353-357.

Konruang, S., Sirijarukul, S., Wanichapichart, P., Yu, L., and Chittrakarn, T., (2015). Ultraviolet‐ray treatment of polysulfone membranes on the O2/N2 and CO2/CH4 separation performance. Journal Applied Polymer. Science. 132(25): 1-8.

Kusworo, T. D., Utomo, D. P., & Aryanti, N., (2017a). Synergistic Effect of UV Irradiation and Thermal Annealing to Develop High Performance Polyethersulfone-nano Silica Membrane for Produced Water Treatment. Journal of Environment and Chemical Engineering. 5 (4): 3290-3301.

Kusworo, T. D., Aryanti, N., Anggita, R. A., Setyorini, T. A. D., & Utomo, D. P. (2017). Surface Modification and Performance Enhancement of Polyethersulfone(PES) Membrane Using Combination of Ultra Violet Irradiation and Thermal Annealing for Produced Water Treatment. Journal of Environmental Science and Technology, 10: 35-43.

Kusworo, T.D., Ismail, A.F., Mustafa, A., and Budiyono. (2013). Studies of thermal annealing on suppression of plasticization of the asymmetric hollow fiber mixed matrix membranes. World Applied Science Journal. 28: 09-19.

Kwisnek, L., Heinz, S., Wiggins, J.S., and Nazarenko, S., (2011). Multifunctional thiols as additives in UV-cured PEG-diacrylate membranes for CO2 separation. Journal Membrane Science. 369: 429-436.

Li, Y., Chung, T.S., and Kulprathipanja, S., (2007). Novel Ag+‐zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity, America institute of chemical engineers journal. 53: 610-616.

Li, S., Alvarado, G., Noble, R.D., and Falconer, J.L., (2005). Effects of impurities on CO 2/CH 4 separations through SAPO-34 membranes. Journal Membrane. Science. 251: 59-66.

Li, S., Falconer, J.L., and Noble, R.D., (2004). SAPO-34 membranes for CO2/CH4 separation. Journal Membrane Science. 241: 121-135.

Li, D.F., Chung, T.S., Wang, R., and Liu, Y., (2002). Fabrication of fluoropolyimide / polyethersulfone (PES) dual-layer asymmetric hollow fiber membranes for gas separation. Journal Membrane Science. 198: 211 – 223.

Lin, L., Lopez, R., Ramon, G.Z., and Coronell, O., (2015). Investigating the void structure of the polyamide active layers of thin-film composite membranes. Journal Membrane Science. 497: 365-376.

Mohammad, A.W., Ahmad, A., and Ng, L.Y., (2013). Alteration of polyethersulphone membranes through UV-induced modification using various materials: A brief review, Arabian Journal of Chemistry. 10, Supplement 2, S1821-S1834.

Pabby, A.K., Risvi, S.S.H., and Sastre, A.M., (2009). Handbook of membrane separations: Chemical, pharmaceutical, food, and biotechnological applications, Taylor and Francis Group, New York.

Pakizeh, M., Mansoori, S.A.A., Chenar, M.P. Namvar-Mahboub, M., Braz., (2013). Modification of PSf membrane nanostructure using different fabrication parameters and investigation of the CO2 separation properties of PDMS-coated PSf composite membranes. Journal of Chemical Engineering. 30: 345-354.

Powell, C.E. and Qiao, G.G. (2006). Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal Membrane Science. 279: 1-49.

Scholz, M., Alders, M., Lohaus, T., and Wessling, M., (2015). Structural optimization of membrane-based biogas upgrading processes. Journal Membrane Science. 474:1-10.

Sharif, A., Koolivand, H., Khanbabaie, G., Hemmati, M., Aalaie, J., Kashani, M.R., and Gheshlaghi, A., (2012). Improvement of CO2/CH4 separation characteristics of polyethersulfone by modifying with polydimethylsiloxane and nano-silica, Journal of Polymer Research, 19(7): 9916.

Suleman, M.S., Lau, K.K., and Yeong, Y.F., (2016). Plasticization and Swelling in Polymeric Membranes in CO2 Removal from Natural Gas. Chemical Engineering Technology. 39: 1-14.

Süer, M.G., Baç, N., and Yilmaz, L., (1994). Gas permeation characteristics of polymer-zeolite mixed matrix membranes. Journal Membrane Science. 91: 77-86.

Stuart, B. (2004). Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons. Ltd, Chichester.

Swaidan, R.J., Ma, X., Litwiller, E., and Pinnau, I., (2015). Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous hydroxyl-functionalized polyimide membrane. Journal Membrane Science. 495: 235 – 241.

Vinodhini, P.A., Sangeetha, K., Gomathi, T., Sudha, P.N., Venkatesan, J., and Sukumaran, A., (2017). FTIR, XRD and DSC studies of nanochitosan, cellulose acetate, and polyethylene glycol blend ultrafiltration membranes. International Journal of Biological and Macromolecules. In Press (2017).

Wang, D., Li, K., and Teo, W., (2000). Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as a non-solvent additive. Journal Membrane Science. 176: 147-158.

Yousif, E., and Haddad, R., (2013). Photodegradation and photostabilization of polymers, especially polystyrene. SpringerPlus, 2: p.398.

Zhang, Y., Sunarso, J., Liu, S., and Wang, R., (2013). Current status and development of membranes for CO2/CH4 separation: a review. International Journal of Greenhouse Gas Control. 12: 84-107.

Zhuang, G.L., Wey, M.Y., and Tseng, H.H., (2015). The density and crystallinity properties of PPO-silica mixed-matrix membranes produced via the in situ sol-gel method for H2/CO2 separation. II: effect of thermal annealing treatment, Chem. Eng. Res. Desalination. 104: 319-332.

Zou, H., Wu, S., and Shen, J., (2008). Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications, Chem. Rev. (Washington, DC, U.S.), 108(9): 3893-3957.

Chemical Engineering