Focused Synthetic Radar Imaging Approach for Multi-tumors Screening

  • Abdullah Alqallaf

Abstract

In the last two decades, microwave imaging methods for early detection of possible tumors has received ample of attentions. As a non-ionizing radiator, the microwave imaging has a definite advantage over X-ray mammography which is currently the main method of breast cancer diagnosing. This paper presents a focused synthetic radar imaging approach to detect the possible existing tumors and to clearly identify their sizes and locations to assist the physicians in cancer prognosis. Both analytical and simulation results are obtained for assumed tumors of different sizes and locations. This is done by modeling the breast tissues and the design of illuminating antenna. Finally, the proposed study includes the required design elements of the optimized antenna used for accurately locating the tumors within a minimal margin of error.

Author Biography

Abdullah Alqallaf
Abdullah K. Alqallaf is an assistant professor with the Department of Electrical Engineering at the Kuwait University. He received the B.S. and M.S. degrees in electrical engineering from Kuwait University in 1996 and 1999, respectively, and the Ph.D. degree in electrical engineering from the University of Minnesota – twin cities, St. Paul, MN, in 2009. Alqallaf’s research interests are Microwave Imaging Techniques, Multimedia Signal Processing, Communication, Bioinformatics and Medical Image Analysis. Alqallaf is an IEEE Senior Member and an IEEE Board Member – Kuwait section.

References

Alqallaf, A. K., Dib, R. K. & Mahmoud, S. F. 2016. Microwave Imaging Using Synthetic Radar Scheme Processing for the Detection of Breast Tumors: The Applied Computational Electromagnetics Society, 31: 98-105.

Brown, M., Houn, F., Sickles, E. & Kessler, L. 1995. Screening mammography in community practice: Amer. J. Roentgen., 165: 1373-1377.

Huynh, P. T., Jarolimek, A. M. & Daye, S. 1998. The false-negative mammogram: Radiograph., 18: 1137-1154.

Elmore, J. G., Barton, M. B., Moceri, V. M., Polk, S., Arena, P. J. & Fletcher, S. W. 1998. Ten-year risk of false positive screening mammograms and clinical breast examinations: New Eng. J. Med., 338: 1089-1096.

Jackson, V. P., Hendrick, R. E., Feig, S. A. & Kopans, D. B. 1993. Imaging of the radiographically dense breast: Radiology, 188: 297-301.

Surowiec, A. J., Stuchly, S. S., Barr, J. R. & Swarup, A. 1988. Dielectric properties of breast carcinoma and the surrounding tissues: IEEE Trans. Biomed. Eng., 35: 257-263.

Joines, W. T., Zhang, Y., Li, C. & Jirtle, R. L. 1994. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz: Med. Phys., 21: 547-550.

Chaudhary, S. S., Mishra, R. K., Swarup, A. & Thomas, J. M. 1984. Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies: Indian J. Biochem. Biophys., 21: 76-79.

Hagness, S. C., Leininger, K. M., Booske, J. H. & Okoniewski, M. 2000. Dielectric characterization of human

breast tissue at microwave frequencies: presented at the 2nd World Congr. Microwave and Radio Frequency Processing.

Caorsi, S., Gragnani, G. L. & Pastorino, M. P. 1993. Reconstruction of dielectric permittivity distributions in arbitrary 2-D inhomogeneous biological bodies by a multiview microwave numerical method: IEEE Trans. Med. Imag., 12: 232-239.

Souvorov, A. E., Bulyshev, A. E., Semenov, S. Y., Svenson, R. H., Nazarov,A. G., Sizov, Y. E. & Tatsis, G. P. 1998. Microwave tomography, A two-dimensional Newton iterative scheme: IEEE Trans. Microwave Theory Tech . , 46: 1654-1659.

Chew, W. C. 1998. Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, A. Taflove, Ed. Norwood, MA: Artech House, ch. 12.

Franchois, A., Joisel, A., Pichot, C. & Bolomey, J. C. 1998. Quantitative microwave imaging with a 2.45-GHz planar microwave camera: IEEE Trans. Med. Imag., 17: 550-561.

Bertero, M., Miyakawa, M., Boccacci, P., Conte, F., Orikasa, K. & Furutani, M. 2000. Image restoration in chirp-pulse microwave CT (CP-MCT): IEEE Trans. Biomed. Eng., 47: 690-699.

Meaney, P. M., Paulsen, K. D., Chang, J. T., Fanning, M. W. & Hartov, A. 1999. Nonactive antenna compensation for fixed-array microwave imaging—Part II: Imaging results: IEEE Trans. Med. Imag., 18: 508-518.

Meaney, P. M., Fanning,M. W., Li, D., Poplack, S. P. & Paulsen, K. D. 2000. A clinical prototype for active microwave imaging of the breast: IEEE Trans. Microwave Theory Tech., 48:1841-1853.

Hagness, S. C. Taflove, A. & Bridges, J. E. 1998. Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed-focus and antenna-array sensors: IEEE Trans. Biomed. Eng., (45) 1470-1479.

Hagness, S. C., Taflove, A. & Bridges, J. E. 1997. Wideband ultra low reverberation antenna for biological sensing: Electron. Lett., 33(19): 1594-1595.

Hagness, S. C., Taflove, A. & Bridges, J. E. 1999. Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: design of an antenna-array element: IEEE Trans. Antennas Propagat., (47) 783-791.

Li, X. & Hagness, S. C. 2001. A confocal microwave imaging algorithm for breast cancer detection: IEEE Microwave Wireless Comp. Lett., 11: 130-132.

Fear, E. C. & Stuchly, M. A. 1999. Microwave system for breast tumor detection: IEEE Microwave Guided Wave Lett., 9: 470-472.

Fear, E. C. & Stuchly, M. A. 2000. Microwave detection of breast cancer: IEEE Trans. Microwave Theory Tech., 48: 1854-1863.

Fear, E. C. & Stuchly, M. A. 2000. Microwave detection of breast tumors: Comparison of skin subtraction algorithms,” Proc. SPIE, 41(29) 207-217.

Fear, E. C., Li, X., Hagness, S. C. & Stuchly, M. A. 2002. Confocal Microwave Imaging for Breast Cancer Detection: Localization of Tumors in Three Dimensions: IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 49 (8).

Byrne, D., O'Halloran, M., Jones, E. & Glavin, M. 2010. Transmitter-grouping robust capon beamforming for breast cancer detection: Progress In Electromagnetics Research, 108: 401-416.

Huang, W. & Kishk, A. 2007. Compact wideband multi-layer cylindrical dielectric resonator antennas: IEE Proc. Microw. Antennas Propag., 1(4): 998-1005.

Huang, W. & Kishk, A. 2009. Compact dielectric resonator antenna for microwave breast cancer detection: IET Microwave, Antennas & propagation, 3(4): 638-644.

Nilavalan, R., Craddock, I. J., Preece1, A., Leendertz1, J. & Benjamin, R. 2007. Wideband microstrip patch antenna design for breast cancer detection: IET Microw. Propag., 1(2): 277-281.

Gibbins, D., Klemm, M., Craddock, I. J., Leendertz, J. A., Preece, A. & Benjamin, R. 2010. A comparison of a wide-slot and a stacked patch antenna for the purpose of breast cancer detection: IEEE Transactions on Antennas and Propagation, 58(3): 665-674.

Durgun, A. C., Balanis, C. A., Birtcher, C. R. & Allee, D. A. 2011. Design, Simulation, Fabrication and Testing of Flexible Bow-Tie Antennas: IEEE Trans. On Anennas and Propagat., 59(12).

Abramowitz, M. & Stegun, I. A. Ed., 1970. Handbook of Mathematical Functions: Chap. 10 by H. Antosiewice, Dover Publications. Inc., New York.

Harrington, R. F. 1961. Time Harmonic Electromagnetic Fields: Chapter 6, McGraw Hill.

Eldek, A. A., Elsherbeni, A. Z. & Smith, C. E. 2005. Wideband Modified Printed Bow-Tie Antenna with Single and Dual Polarization for C and X-Band Applications,” IEEE Transaction on Antennas and Propagations, 53 (9): 3067-3072.

Porter, E., Walls, G., Zhou, Y., Popovic, M. & Schwartz, J. D. 2014. A Flexible Broadband Antenna and Transmission Line Network for a Wearable Microwave Breast Cancer Detection System: Progress In Electromagnetics Research Letters, 49:111-118.

Wang, Z., Lim, E. G., Tang, Y. & Leach, M. 2014. Medical Applications of Microwave Imaging: The Scientific World Journal, 2014.

Singh, P. K., Tripathi, S. K., Sharma, R. & Kumar, A. 2013. Design & Simulation of Microstrip Antenna for Cancer Diagnosis: International Journal of Scientific & Engineering Research, 4( 11): 1821-1824.

Brown, M., Houn, F., Sickles, E. & Kessler, L. 1995. Screening mammography in community practice: Amer. J. Roentgen., 165: 1373-1377.

International Agency for Research on Cancer (IARC) and World Health Organization (WHO) 2012. GLOBOCAN: Estimated cancer incidence, mortality and prevalence worldwide.

Elbasmi, A., Al-Asfour, A., Al-Nesf, Y. & Al-Awadi A. 2010. Cancer in Kuwait, magnitude of the problem: Gulf J Oncolog., 8: 7–14.

Published
2019-08-07
Section
Electrical Engineering