The performance of thermal based modified solid oxide fuel cell (SOFC) model under different DC load conditions

  • Ayetül GELEN Gaziosmanpasa University
  • Tankut YALCINOZ Mevlana University
Keywords: Different load types, Load following, Solid Oxide Fuel Cell, Thermal model.

Abstract

In this paper, a thermal-baseddynamic model of a Solid Oxide Fuel Cell under different direct current loadconditions is improved by using our previous developed fuel cell model, whichincludes ohmic, activation and concentration voltage losses, thermal dynamics,and methanol reformer. The modified SolidOxide Fuel Cell model covers restriction of fuel utilization factor. Hence, the voltage and power of the Solid OxideFuel Cell stack are limited to avoid excessive fuel flow and temperature. The SolidOxide Fuel Cell model is developed in a Matlab/Simulink environment and testedfor different direct current load conditions, which are step, ramp, random and stair-caseloads. The simulation results show that the modified Solid Oxide Fuel Cellmodel can be used to precisely follow the direct current load variations. Thisis true because reaching thesteady state of the system takes a shorter time for the ramp load, and takes a longertime for the step load. Besides, the limitation of the fuel utilizationfactor can be seen more clearly from the system with the stair-case load.

Author Biographies

Ayetül GELEN, Gaziosmanpasa University
Tankut YALCINOZ, Mevlana University

References

Achenbach, E. 1995. Response of a solid oxide fuel cell to load change. Journal of Power Sources 57 (1-2): 105-109, doi:10.1016/0378-7753(95)02263-5.

Akkaya, A.V. 2007. Electrochemical model for performance analysis of a tubular SOFC. International Journal of Energy Research 31 (1): 79–98, doi: 10.1002/er.1238.

Chakraborty, U.K. 2009. Static and dynamic modeling of solid oxide fuel cell using genetic programming. Energy 34: 740–751, doi: 10.1016/j.energy.2009.02.012.

EG & G Services, Inc., Sci. Appl. Int. Corp., DOE, Office Fossil Energy, Nat. Energy Technol. Lab. 2002. Fuel Cell Handbook. 6th ed. Morgantown, WV.

El-Sharkh, M.Y., Rahman, A., Alam, M.S., Byrne, P.C., Sakla, A.A. & Thomas, T. 2004. A dynamic model for a standalone PEM fuel cell power plant for residential application. Journal of Power Sources 138: 199-204, doi:10.1016/j.jpowsour.2004.06.037.

Gebregergis, A. & Pillay, P. 2010. Implementation of fuel cell emulation on DSP and dSPACE controllers in the design of power electronic converters. IEEE Transaction on Industry Applications 46 (1): 285-294, doi: 10.1109/TIA.2009.2036676.

Gelen, A. & Yalcinoz, T. 2013. A dynamic model for solid oxide fuel cell system and analyzing of its performance for DC and AC operation conditions. International Journal of Energy Research 37 (10): 1232-1241, doi: 10.1002/er.2922.

Goel, A., Mishra, S. & Jha, A.N. 2006. Power flow control of a solid oxide fuel cell for grid connected operation. International Conference on Power Electronics, Drives and Energy Systems PEDES'06, New Delhi, 1-5, doi: 10.1109/PEDES.2006.344260.

Hauer, K.-H. 2001. Analysis tool for fuel cell vehicle hardware and software (controls) with an application to fuel economy comparisons of alternative system designs, Ph.D. dissertation, University of California Davis.

Kang, Y.W., Li, J., Cao, G.Y., Tu, H.Y., Li, J. & Yang, J. 2008. Dynamic temperature modeling of an SOFC using least squares support vector machines. Journal of Power Sources 179: 683-692, doi: 10.1016/j.jpowsour.2008.01.022.

Larminie, J. & Dicks, A. 2003. Fuel Cell Systems Explained. 2nd ed. Wiley: New York.

Li, Y.H., Choi, S.S. & Rajakaruna, S. 2005. An analysis of the control and operation of a Solid Oxide Fuel Cell power plant in an isolated system. IEEE Transaction on Energy Conversion 20 (2): 381-387, doi: 10.1109/TEC.2005.847998.

Lu, N., Li, Q., Sun, X. & Khaleel, M.A. 2007. Dynamic modeling in solid oxide fuel cells controller design. IEEE Power Engineering Society General Meeting, Tampa, FL, 1-7, doi: 10.1109/PES.2007.385638.

Mueller, F., Jabbari, F., Gaynor, R. & Brouwer, J. 2007. Novel solid oxide fuel cell system controller for rapid load following. Journal of Power Sources 172: 308–323, 10.1016/j.jpowsour.2007.05.092.

Ohl, G.L. 1995. Dynamic analysis of a methanol to hydrogen steam reformer for transportation applications. Ph.D. dissertation, University of Michigan.

Padulles, J., Ault, G.W. & McDonald, J.R. 2000. An integrated SOFC plant dynamic model for power systems simulation. Journal of Power Sources 86: 495-500, doi: 10.1016/S0378-7753(99)00430-9.

Peters, R., Düsterwald, H. G. & Hoehlein, B. 1998. Simulation of fuel cell powered vehicles. Proceedings 31st ISATA (International Symposium on Automotive Technology & Automation), Düsseldorf, Germany.

Qi, Y., Huang, B. & Luo, J. 2006. Nonlinear state space modeling and simulation of a SOFC fuel cell. Proc. of the American Control Conference, Minnesota, USA, 2534–2538, doi: 10.1109/ACC.2006.1656603.

Ren, J., Roscoe, A.J., Gamble, S. & Burt, G. 2010. Modeling a reversible solid oxide fuel cell to be used as a storage device within AC power networks. 5th IET International Conference on Power Electronics Machines and Drivers, Brighton, UK, 10.1049/cp.2010.0119.

Sedghisigarchi, K. & Feliachi, A. 2004. Dynamic and transient analysis of power distribution systems with fuel cells–Part I: Fuel cell dynamic model. IEEE Transaction on Energy Conversion 19 (2): 423-428, doi: 10.1109/TEC.2003.822302.

Uzunoglu, M. & Onar, O.C. 2008. Static VAr compensator based reactive power management for SOFC power plants. International Journal of Hydrogen Energy 33: 2367-2378, doi:10.1016/j.ijhydene.2008.02.050.

Wang, C. & Nehrir, M.H. 2007. A physically based dynamic model for solid oxide fuel cells, IEEE Transaction on Energy Conversion 22 (4): 887-897, doi: 10.1109/TEC.2007.895468.

Wang, C. & Nehrir, M.H. 2007. Short–time overloading capability and distributed generation applications of solid oxide fuel cells. IEEE Transaction on Energy Conversion 22 (4): 898–906, doi: 10.1109/TEC.2007.895472.

Wang, L., Zhang, H. & Weng, S. 2008. Modeling and simulation of solid oxide fuel cell based on the volume–resistance characteristic modeling technique. Journal of Power Sources 177: 579–589, doi: 10.1016/j.jpowsour.2007.10.051.

Wu, X.J., Zhu, Z.J., Cao, G.Y. & Tu, H.Y. 2008. Dynamic modeling of SOFC based on a T-S fuzzy model. Simulation Modeling Practice and Theory 16: 494-504, doi:10.1016/j.simpat.2008.02.004.

Wu, X.J., Zhu, Z.J., Cao, G.Y. & Tu, H.Y. 2008. Predictive control of SOFC based on a GA-RBF neural network model. Journal of Power Sources 179: 232-239, doi: 10.1016/j.jpowsour.2007.12.036.

Yang, J., Li, X., Mou, H.G. & Jian, L. 2009. Control oriented thermal management of solid oxide fuel cells on a modified Takagi-Sugeno fuzzy model. Journal of Power Sources 188: 475-482, doi: 10.1016/j.jpowsour.2008.12.012.

Zhang, T., Feng, G. & Xiang, W. 2008. Fuzzy dynamic modeling and predictive load following control of a solid oxide fuel cell power system. IEEE Transmission and Distribution Conf. and Exposition, Chicago, USA, 231–237, doi: 10.1109/FUZZY.2008.4630370.

Zhu, Y. & Tomsovic, K. 2002. Development of models for analyzing the load-following performance of microturbines and fuel cells. Electric Power System Research 62: 1-11, doi:10.1016/S0378-7796(02)00033-0.

Published
2015-09-07
Section
Electrical Engineering