Combustion effect on the physical, chemical, mineralogical, and microstructural compositions of urban sewage sludge
Abstract
This paper investigates the combustion of the urban sewage sludge from 550 to 1000˚C with
the aim of studying the evolution that occurs on the composition of the sewage sludge during the
heat treatment process. Several analyses have been carried out: pH, X-ray fluorescence, and atomic
absorption spectrometry. The results of the experiments indicate that increasing the temperature
increases the basic character, the amount of major and minor elements in the obtained sewage
sludge ash. These phenomena are due to the richness of the sludge in the organic matter, which
led to a considerable volume reduction when the sludge was combusted. The X-ray fluorescence
analysis of the sewage sludge ash showed an increase in the amount of aluminosilicates, which
constitute the reactive part in a pozzolanic material. The atomic absorption spectrometer analysis of
the heavy metals in the ash showed that their respective concentrations depend on their melting and
boiling points. The calcium carbonates decomposition, observed by X-ray diffractometry, occurred
during the combustion of the sludge between 650 and 700˚C. The scanning electron microscopy
showed morphological changes in the sewage sludge ash when the temperature increases. The size
of the ash grains increased due to agglomeration, and sintering occurs. It can be concluded that
the combustion of the dried sewage sludge leads to an ash, whose properties are interesting for its
valorisation in building materials.
References
Abrego, J., Arauzo, J., Sanchez, J. L., Gonzalo, A., Cordero, T. & Rodrıguez-Mirasol, J. 2009. Structural
changes of sewage sludge char during fixed-bed pyrolysis. Industrial & Engineering Chemistry Research,
: 3211- 3221.
Al Sayed, M. H., Madany, I. M. & Buali, A. R. M. 1995. Use of sewage sludge ash in asphaltic paving
mixes in hot regions. Construction and Building Materials, 9(1): 19 -23.
Baeza-Brotons, F., Garces, P., Paya, J. & Saval, J. M. 2014. Portland cement systems with addition of
sewage sludge ash. Application in concretes for the manufacture of blocks. Journal of Cleaner Production,
: 112- 124.
Bhatty, J. I. & Reid, K. J. 1989. Lightweight aggregates from incinerated sludge ash. Waste Management
& Research, 7: 363- 376.
Bianchini, A., Bonfiglioli, L., Pellegrini, M. & Saccani, C. 2015. Sewage sludge drying process integration
with a waste-to-energy power plant. Waste Management, 42: 159 -165.
Bouzid, J., Elouear, Z., Ksibi, M., Feki, M. & Montiel, A. 2008. A study on removal characteristics of
copper from aqueous solution by sewage sludge and pomace ashes. Journal of Hazardous Materials,
: 838 -845.
Cheeseman, C.R. & Virdi, G.S. 2005. Properties and microstructure of lightweight aggregate produced from
sintered sewage sludge ash. Resources, Conservation and Recycling, 45: 18- 30.
Chen, J. C., Wey, M. Y. & Ou, W. Y. 1999. Capture of heavy metals by sorbents in incineration flue gas. The
Science of the Total Environment, 228: 67- 77.
Chen, M., Blanc D., Gautier M., Mehu J. & Gourdon R. 2013. Environmental and technical assessments
of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction.
Waste Management, 33: 1268- 1275.
Chen, T. & Yan, B. 2012. Fixation and partitioning of heavy metals in slag after incineration of sewage
sludge. Waste Management, 32: 957- 964.
Corella, J. & Toledo, J. M. 2000. Incineration of doped sludges in fluidized bed. Fate and partitioning of
six targeted heavy metals. I. Pilot plant used and results. Journal of Hazardous Materials, B80: 81- 105.
Cusidó, J. A. & Cremades, L. V. 2012. Environmental effects of using clay bricks produced with sewage
sludge: Leachability and toxicity studies. Waste Management, 32: 1202 -1208.
Cyr, M., Coutand, M. & Clastres, P. 2007. Technological and environmental behaviour of sewage sludge
ash (SSA) in cement-based materials. Cement and Concrete Research, 37: 1278- 1289.
Donatello S. & Cheeseman, C. R. 2013. Review: Recycling and recovery routes for incinerated sewage
sludge ash (ISSA): A review. Waste Management, 33: 2328 -2340.
Folgueras, M.B., Alonso, M. & Díaz, R.M. 2013. Influence of sewage sludge treatment on pyrolysis and
combustion of dry sludge. Energy, 55: 426- 435.
Fytili, D. & Zabaniotou, A. 2008. Utilization of sewage sludge in EU application of old and new methods-A
review. Renewable and Sustainable Energy Reviews, 12: 116- 140.
Gavalda, D., Scheiner, J.D., Revel, J.C., Merlina, G., Kaemmerer, M., Pinelli, E. & Guiresse M. 2005.
Agronomic and environmental impacts of a single application of heat-dried sludge on an Alfisol. Science
of the Total Environment, 343: 97 -109.
Groß, B., Eder, C., Grziwa, P., Horst, J. & Kimmerle, K. 2008. Energy recovery from sewage sludge by
means of fluidised bed gasification. Waste Management, 28: 1819 -1826.
Han, J., Xu, M., Yao, H., Furuuchi, M., Sakano, T., Kanchanapiya, P. & Kanaoka, C. 2006. Partition of
heavy and alkali metals during sewage sludge incineration. Energy & Fuels, 20: 583- 590.
ISO 11265: 1994. Soil quality – Determination of the specific electrical conductivity.
ISO 5667 -13: 1997. Water quality – Sampling – Part 13: Guidance on sampling of sludges from sewage and
water treatment works.
ISO 5667- 15: 1999. Water quality – Sampling – Part 15: Guidance on preservation and handling of sludge
and sediment samples.
Khiari, B., Marias, F., Zagrouba, F. & Vaxelaire J. 2004. Analytical study of the pyrolysis process in
wastewater pilot station. Desalination, 167: 39- 47.
Kuntz, J., Nassr-Amellal, N., Lollier, M., Schmidt, J. E. & Lebeau, T. 2008. Effect of sludges on bacteria
in agricultural soil. Analysis at laboratory and outdoor lysimeter scale. Ecotoxicology and Environmental
Safety, 69: 277- 288.
Li, H., Zou, S., Li, Y. & Jin, Y. 2013. Characteristics and model of sludge adhesion during thermal drying.
Environmental Technology, 34(6): 807- 812.
Lin, D. F., Luo, H. L. & Sheen, Y. N. 2005a. Glazed tiles manufactured from incinerated sewage sludge ash
and clay. Journal of the Air & Waste Management Association, 55: 163- 172.
Lin, D.F., Lin, K.L., Chang, W.C., Luo, H.L. & Cai, M.Q. 2008. Improvements of nano-SiO2 on sludge/
fly ash mortar. Waste Management, 28: 1081 -1087.
and Concrete Research, 35: 1999 -2007.
Lin, K.L., Chiang, K.Y. & Lin, C.Y. 2005b. Hydration characteristics of waste sludge ash that is reused in
eco-cement clinkers. Cement and Concrete Research, 35: 1074 -1081.
Lin, M., Ning, X. A., Liang, X., Wei, P., Wang, Y. & Liu, J. 2014. Study of the heavy metals residual in
the incineration slag of textile dyeing sludge. Journal of the Taiwan Institute of Chemical Engineers,
: 1814- 1820.
Liu, Z., Qian, G., Sun, Y., Xu, R., Zhou, J. & Xu, Y. 2010. Speciation evolutions of heavy metals during the
sewage sludge incineration in a laboratory scale incinerator. Energy & Fuels, 24: 2470 -2478.
Luo, H. L. & Lin, D. F. 2007. Study the surface colour of sewage sludge mortar at high temperature.
Construction and Building Materials, 21: 90 -97.
Magdziarz, A. & Werle, S. 2014. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA
and MS. Waste Management, 34: 174- 179.
Merino, I., Arévalo, L. F. & Romero, F. 2007. Preparation and characterization of ceramic products
by thermal treatment of sewage sludge ashes mixed with different additives. Waste Management,
: 1829 -1844.
Monteroa, M.A., Jordán, M.M., Almendro-Candel, M.B., Sanfeliu, T. & Hernández-Crespo, M.S. 2009
(a). The use of a calcium carbonate residue from the stone industry in manufacturing of ceramic tile
bodies. Applied Clay Science, 43: 186 -189.
Monteroa, M.A., Jordán, M.M., Hernández-Crespo, M.S. & Sanfeliu, T. 2009b. The use of sewage
sludge and marble residues in the manufacture of ceramic tile bodies. Applied Clay Science, 46: 404- 408.
Monzo, J., Paya, J., Borrachero, M.V. & Corcoles, A. 1996. Use of sewage sludge ash (SSA)-cement
admixtures in mortars. Cement and Concrete Research, 26(9): 1389- 1398.
Monzo, J., Paya, J., Borrachero, M.V. & Girbes, I. 2003. Reuse of sewage sludge ashes (SSA) in cement
mixtures: the effect of SSA on the workability of cement mortars. Waste Management, 23: 373- 381.
Monzó, J., Payá, J., Borrachero, M.V. & Peris-Mora, E. 1999. Mechanical behavior of mortars containing
sewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content. Cement and
Concrete Research, 29: 87 -94.
NF EN 12176: 1998. Caractérisation des boues – Détermination de la valeur du pH.
NF EN 12879: 2000. Caractérisation des boues – Détermination de la perte au feu de la matière sèche.
NF EN 12880: 2000. Caractérisation des boues – Détermination de la teneur en matière sèche et de la teneur
en eau.
NF EN 197- 1: 2001. Ciment – Composition – Spécifications et critères de conformité – Partie 1 : Composition,
spécifications et critères de conformités des ciments courants.
Pan, S. C., Tseng, D. H., Lee, C. C. & Lee, C. 2003. Influence of the fineness of sewage sludge ash on the
mortar properties. Cement and Concrete Research, 33: 1749 -1754.
Pena, A., Mingorance, Mª D., Guzman-Carrizosa, I. & Fernandez-Espinosa, A. J. 2015. Improving
the mining soil quality for a vegetation cover after addition of sewage sludges: Inorganic ions and
low-molecular-weight organic acids in the soil solution. Journal of Environmental Management,
: 216- 225.
Pigamo, A., Besson, M., Blanc, B., Gallezot, P., Blackburn, A., Kozynchenko, O., Tennison, S., Crezee,
E. & Kapteij, F. 2002. Effect of oxygen functional groups on synthetic carbons on liquid phase oxidation
of cyclohexanone. Carbon, 40: 1267 -1278.
Romdhanaa, M. H., Lecomte, D., Ladevie, B. & Sablayrolles, C. 2009. Monitoring of pathogenic
microorganisms contamination during heat drying process of sewage sludge. Process Safety and
Environmental Protection, 87: 377- 386.
Tay, J. H. & Show, K. Y. 1992. Utilization of municipal wastewater sludge as building and construction
materials, Resources, Conservation and Recycling, 6: 191 -204.
Tuan, B. L. A., Hwang, C. L., Lin, K. L., Chen, Y. Y. & Young, M. P. 2013. Development of lightweight
aggregate from sewage sludge and waste glass powder for concrete. Construction and Building Materials,
: 334 -339.
Valdecantos, A., Cortina, J. & Vallejo, V. R. 2011. Differential field response of two Mediterranean tree
species to inputs of sewage sludge at the seedling stage. Ecological Engineering, 37: 1350 -1359.
Vassilev, S. V., Kitano, K., Takeda, S. & Tsurue, T. 1995. Influence of mineral and chemical composition of
coal ashes on their fusibility. Fuel Processing Technology, 45: 27 -51.
Wang, K. S., Chiou, I. J., Chen, C. H. & Wang, D. 2005. Lightweight properties and pore structure of
foamed material made from sewage sludge ash. Construction and Building Materials, 19: 627- 633.
Wang, L., Skjevrak, G., Hustad, J. E. & Grønli, M. G. 2012. Sintering characteristics of sewage sludge
ashes at elevated temperatures. Fuel Processing Technology, 96: 88 -97.
Weng, C. H., Lin, D. F. & Chiang, P. C. 2003. Utilization of sludge as brick materials. Advances in
Environmental Research, 7: 679- 685.
Werther, J. & Ogada, T. 1999. Sewage sludge combustion. Progress in Energy and Combustion Science,
: 55- 116.
Yan, R., Liang, D. T., Laursen, K., Li, Y., Tsen, L. & Tay, J. H. 2003. Formation of bed agglomeration in a
fluidized multi-waste incinerator. Fuel, 82: 843 -851.
Zhang, F. S., Yamasaki, S. I. & Nanzyo, M. 2001. Application of waste ashes to agricultural land-effect of
incineration temperature on chemical characteristics. The Science of the Total Environment, 264: 205 -214.