Ion beam analysis for hall scattering factor measurements in antimony implanted bulk and strained silicon

  • Talal Alzanki Dept.of Elect. Eng., College of Technical Studies, Public Authority for Applied Education & Training, Kuwait.
  • Nick Bennett Dept.of Elect. Eng., Dublin City University, Ireland.
  • Chris Jeynes Dept.of Elect. Eng., University of Surrey, Surrey, United Kingdom.
  • Russell Gwilliam
  • Paul Bailey Lab. of MEIS,Daresbury, Cheshire, United Kingdom.
  • Tim Noakes Lab. of MEIS,Daresbury, Cheshire, United Kingdom.
  • Brian Sealy Dept.of Elect. Eng., University of Surrey, Surrey, United Kingdom.
Keywords: Rutherford backscattering, Medium Energy Ion Scattering, Hall scattering factor, Hall effect, rapid thermal annealing, antimony, bulk silicon, strained silicon.


Rutherford back-scattering (RBS) and Medium Energy Ion Scattering (MEIS) have been used todetermine the lattice site occupancy of antimony (Sb) implanted into silicon (Si) and strainedsilicon (sSi) for ion energies of 2keV to 40keV. After annealing in the range 600-11000C forvarious times, Hall effect measurements were used to provide a measure of the percentageelectrical activity. A comparison of the lattice site occupancy with the percentage electricalactivity was used to confirm whether the assumption that the Hall scattering factor is equal tounity is valid. Our results demonstrate that for 40keV implants the electrical activation is about90%. In the case of 2keV implants the electrical activation is lower and in the range 10-80%,depending on the ion fluence and annealing conditions. This reduction in activation for lowerenergy implants is a result of inactive Sb close to the semiconductor/native-oxide interface, orabove concentrations of 4.5x1020cm-3. Tensile strain facilitates the lattice site occupancy andelectrical activation of Sb in Si by raising the doping ceiling. For both 40keV and 2keV implants,we have carried out a comparison of RBS/MEIS and Hall effect data to show that for Sbimplants into both bulk Si and strained Si the Hall scattering factor is equal to unity withinexperimental error.


Alzanki, T. 2004.Antimony implants for ultra-shallow junctions in silicon. .PhD Thesis.University

of Surrey. United Kingdom (UK).

Sealy, B. J. Smith, A. Alzanki, T. Bennett, N.S. Li. L, Jeynes, C. Colombeau. C, Collart. E,

Gwilliam, Emerson, N. & Cowern, N. 2006. Shallow junctions in silicon via low thermal budget

processing. IWJT International Workshop on Junction Technology: 10-15.

Alzanki, T.Gwilliam, R. Emerson, N. Smith, A. Webb, R.& Sealy, B. J. 2006.Electrical profiles

of 20nm junctions in Sb implanted silicon. Nuclear Instruments and Methods in Physics Research

B242: 693-695.

Bennett, N.S., Cowern, N. Smith, A.,Gwilliam, R, Sealy, B. J., O’Reilly, L. McNally, P.J.

Cooke, G. &Kheyrandish, H. 2006. Highly conductive Sb-doped layers in strained Si. Applied

Physics letters 89: 182122.

Bennett, N.S., Smith, A.J. ,Gwilliam, R.M., Webb, R.P., Sealy, B.J., Cowern, N.E.B.,

O’Reilly, L., & McNally, P.J. 2008(A). Antimony for n-type metal oxide semiconductor

ultrashallow junctions in strained Si: a superior dopant to arsenic?. Journal of Vacuum Science and

TechnologyB26: 391-395.

Bennett, N.S. Radamson, H. Beer, C. Smith, A. Gwilliam, R, Cowern, N, &Sealy, B.J.

(B). Enhanced n-type dopant solubility in tensile-strained Si. Thin Solid Films 517: 331-333

O’Reilly, L. Bennett, N.S. McNally, P.J. Sealy, B.J., Cowern, N.E.B. Lankinen, A. Tuomi, T.

O. 2008. Journal of Materials Science: Materials in Electronics 19: 305-309.

Bennett, N.S. 2008(C). Ultrashallow Junctions for Strain-Engineered NMOS Devices.PhD

Thesis.University of Surrey. United Kingdom (UK).

Alzanki, T. Gwilliam, R. Emerson, N. & Sealy, B. J. 2009.Low energy antimony implantation in

p-type silicon for ultra-shallow junction formation. Kuwait Journal of Science and Engineering. 36


Lai, Y. Bennett, N.S. Ahn, C. Cowern, N.E.B. Cordero, N.&Greer, J. C.2009. Transient

activation model for antimony in relaxed and strained silicon. Solid-State Electronics. 53(11):


Hall, E. H.1925. Measurement of the Four Magnetic Transverse Effects. Physical Review 26(6):


Norton, P. Braggins, T. &Levinstein H. 1973.Impurity and Lattice Scattering Parameters as

Determined from Hall and Mobility Analysis in n-Type Silicon. Physical Review B8: 5632–5653.

Romano, L. Napolitani, E. Privitera, V. Scalese, S. Terrasi, A. Mirabella, S.& Grimaldi, M.

G. 2003. Carrier concentration and mobility in B doped Si1−xGex. Materials Science and

Engineering. B102: 49–52.

Matthews, J. W. &Blakeslee, A. E J. 1974. Defects in epitaxial multilayers *: I. Misfit

dislocations.Journal of Crystal Growth. 27: 118–125.

Jeynes,C.Barradas, N. P. Marriott, , P. K. Boudreault, G. Jenkin, M. Wendler, E.& Webb, R.

Elemental thin film depth profiles by ion beam analysis using simulated annealing - a new tool. Journal of Physics D: Applied Physics 36: R97.

Collart, E. Kirkwood, D.Vandervorst, W.Brijs, B.Van den Berg,J. A.Werner, M.&Noakes,

T.C.Q.2002. Characterisation of low Energy Antimony (2-5 keV) Implantation into Silicon.

Proceeding of IEEE International. Conference Ion Implant technology: 147-150.

Mount, G.R., Smith, S.P., Hitzman, C.J., Chia, V.K.F, Magee, C.W., 1998. Ultra-shallow

junction measurements: A Review of SIMS Approaches for Annealed and Processed Wafers. AIP

Conf. Proc. 449: 757-765.

Nylandsted-Larsen, A.Pedersen, F. T. Weyer, G. Galloni, R. Rizzoli, R. &Armigliato, A.

The nature of electrically inactive antimony in silicon. Journal of Applied Physics. 59(6):


Takamura, Y. Marshall, A. F. Mehta, A. Griffin, P. B. Plummer, J. D.& Patel, J. D.

Diffuse x-ray scattering and transmission electron microscopy study of defects in antimonyimplanted

silicon. Journal of Applied Physics 95(8):3968-3977.

Ahn, C. Bennett, N.S. Dunham S. T.& Cowern, N.E.B. 2009. Stress effects on impurity

solubility in crystalline materials: A general model and density-functional calculations for dopants

in silicon. Physical Review B 79: 073201-073204.

Electrical Engineering