Voltage control of SEIG using D-STATCOM and DFIG: a comparative study

  • kalyan Raj kaniganti Jawahar lal Nehru Technological University,kakinada
  • Srinivasa Rao Rayapudi Jawahar lal Nehru Technological University,kakinada
Keywords: Capacitance, Distribution Static Compensator (D-STATCOM), doubly fed induction generator (DFIG), reactive power requirement, self-excited induction generator (SEIG), stabilization.

Abstract

The advancements in power electronic devices have increased the ability of controlling the reactive power flow in the network. This is achieved by using facts devices with advanced control strategies. In recent years, reactive power supplying capabilities of DFIG is also exploited. SEIG is
a well-known wind generator configuration used in both isolated and grid connected modes. SEIG experiences a problem of voltage instability during varying wind speeds and load conditions, which shows a negative impact on the connected network. The reactive power requirement supplied by an external source can assist the generator in operating in stable regions. In this paper, a detailed analysis is done to examine the superiority of DFIG over D-STATCOM in voltage control of SEIG. For this, a novel equivalent capacitance model of DFIG is derived to explain reactive power handling capabilities of DFIG. Two indices, average voltage profile and RUVMN, are used to compare the operational advantages of both techniques. The analysis is done with varying wind
speeds, and results show that voltage control with DFIG is better when compared to D-STATCOM.

Author Biographies

kalyan Raj kaniganti, Jawahar lal Nehru Technological University,kakinada
Department of electrical Engineering
Srinivasa Rao Rayapudi, Jawahar lal Nehru Technological University,kakinada
Department of electrical Engineering

References

Bansal, R. C. 2005. Three Phase Induction generators: An Overview. IEEE Trans. Energy Convers.

(2):292-299

Mustafa A. Al-Saffar Eui-Cheol Nho, Thomas A. & Lipo, 1998. Controlled shunt capacitor self-excited

induction generator. IEEE Conference on Industrial App 2:1486-1490.

Malik, N. H. & Mazi, A. A. 1987. Capacitance requirements of self-excited induction generators. IEEE

Trans. on Energy Conversion 2(1): 2-9.

Kheldoun, A., Refoufi, L. & Eddine, D. 2012. Analysis of the self-excited induction generator steady state

performance using a new efficient algorithm. Journal of Electr. Power Syst 86: 61–67.

Rajambal, K., Umamaheswari, B. & Chellamuthu, C. 2005. Electrical braking of large wind turbines.

Renewable Energy. 30(15): 2235–2245.

Muyeen, S. M., Ali, M. H., Murata, T. & Tamura J. 2006. Transient stability enhancement of wind generator

by a new logical pitch controller. IEEE Trans. Power Energy 126(8):742–752.

Muyeen, S. M., Mannan, M. A., Ali, M. H., Takahashi, R., Murata, T. & Tamura, J. 2006. Stabilization

of wind turbine generator system by STATCOM. IEEJ Trans. Power Energy 126(10):1073–1082.

Saoud, Z. S., Lisboa, M. L., Ekanayake, J. B., Jenkins, N. & Strbac, G. 1998. Application of STATCOMs

to wind farms Proc. IEE Gener. Transm. Distrib. 145(5):511–516.

Hosseini, M., Shayanfar, H. A. & Firuzabad, M. F. 2008. Modeling of series and shunt Distribution FACTS

devices in distribution system Load flow. Journal of Electrical Systems 4: 1-12.

Mohd. H. A. & Bin W. 2010. Comparison of Stabilization Methods for Fixed-Speed Wind Generator

Systems,” IEEE Trans. on Power Delivery 35(1).

Muyeen, S. M., Mannan, M. A., Ali, M. H., Takahashi, R., Murata, T., Tamura, J., Tomaki, Y., Sakahara,

A. & Sasano, E. 2007. Comparative study on transient stability analysis of wind turbine generator system

using different drive train models. IET Renew. Power Gener. 1(2):131–141.

Divya, K. C., Rao & P. S. N. 2006. Models for wind turbine generating systems and their application in load

flow studies. Electric Power Syst. Research 76: 844–856.

Ullahand N. R. & Thiringer, T. 2007. Variable Speed Wind Turbines for Power System Stability Enhancement.

IEEE Trans. Energy conver. 22(1):52–60.

Kayikci, M. & Milanovic, J. V. 2007. Reactive power control strategies for DFIG based plants. IEEE Trans.

Energy Convers. 22(2): 389–396.

Ekanayake, J. B., Holdsworth, L., Xue Guang Wu & Jenkins, N. 2003. Dynamic modeling of doublyfed

induction generator wind turbines. IEEE Trans. Power Syst. 18(2): 803–809.

Tapia. 2003. Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Transactions

on Energy Conversion 18:194-204.

Feijóo & Cidrás, J. 2010. Calculating Steady-State Operating Conditions for Doubly-Fed Induction

Generator Wind Turbines. IEEE Trans. Power Syst.25(2): 922–928.

Dadhani, A., Venkatesh, B., Nassif, A. B. & Sood, V. K. 2013. Modeling of Doubly fed Induction Generators

for Distribution system Power flow analysis Electric Power and Energy Systems 53: 576-583.

Takahashi, R., Tamura, J., Futami, M., Kimura, M. & lde K. 2006. A New Control Method for Wind Energy

Conversion System Using Double Fed Synchronous Generator. IEEJ Power and Energy 126(2):225-235.

Chowdhury, B. H. & Chellapilia, S. 2006. Doubly-fed induction generator control for variable speed wind

power generation. Electric Power System Research 76: 786-800.

Mohseni, M., Islam, S. M. & Masoum, M. A. S. 2011. Enhanced hysteresis-based current regulators in

vector control of DFIG wind turbines. IEEE Trans. Power Electron. 26(1) :223-234.

Published
2018-01-29
Section
Electrical Engineering