Troposphere Delay Remote Sensing Using Single GPS Receiver

  • Ahmed Sedeek Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt.
  • Mohamed Doma Faculty of Engineering, Menofia University, Shebin El Kom, El-Menofia, Egypt.
  • Mostafa Rabah Faculty of Engineering, Benha University, Cairo, Egypt
  • Ahmed Elsayed Faculty of Engineering, Menofia University, Shebin El Kom, El-Menofia, Egypt.

Abstract

The most prominent spatially correlated errors in GNSS observations are well known to be atmospheric effects. The ionosphere and troposphere are the two main layers of the atmosphere that cause GNSS observations delay. A linear combination of the dual-frequency data can be used to reduce ionospheric delay. The tropospheric delay, unlike the ionospheric delay, cannot be eliminated using the same methods. The troposphere is primarily associated with GPS. The delay it causes in GPS signal is regarded as one of the primary sources of errors that must be eliminated to determine accurate positions.

This paper's main purpose is to develop a new source code that can estimate the effect of tropospheric delay over any GPS station. The tropospheric delay in this proposed code is estimated utilizing sequential least-squares adjustment using a model depending on Niell Mapping Function (NMF). This model, known as the Tropospheric Delay Estimation program, was created in the MATLABĀ® environment (TDE).

This research presents the results of tropospheric delay during DOY 2, 2020 of actual data from ten ground-based IGS stations distributed over Antarctica, China, Canada, Fiji, Russia, Greenland, and Portugal IGS stations worldwide. For validation of the proposed code results, they were compared with troposphere delay results of the International GNSS Service (IGS). Good agreement and high correlation were found between both results. In comparison to IGS, the proposed code's standard deviations range from 0.0000525 m to 0.008154 m, indicating how accurate this study is in terms of agreement of solutions provided by IGS. Finally, an adaptable user interface For GPS users, the MATLAB software can accurately estimate troposphere delay.

Published
2022-08-17
Section
Petroleum Engineering