Mechanical Properties of briquette by mixing rice and micrometer-sized carbon particles from potato and yam skins
Abstract
The purpose of this study was to utilize waste potato skins (PS) and yam skins (YS) in the production of briquettes with rice waste as a binder. The basic materials used to utilize waste, especially potato skins (PS), yam skins (YS), and rice waste. Experiments were carried out by mixing and molding carbon particles made from an equal mass ratio of PS and YS with rice as binders (i.e., 10, 20, 30, 40, and 50%). PS and YS were dried, carbonized at 250°C for 3 hours, and sieved to get sizes of 250 µm. To make compact briquettes, the molded materials were pressed with 5.66 Pa. Several characterizations were analyzed, including compressed density, relaxed density, relaxation ratio, percentage of moisture content, burning rate, percentage of water resistance index, percentage of durability index, specific fuel consumption, the puncture test, and the hardness test. The characterization results showed that the prepared briquettes have good quality, and the best was for 10% of adhesive. The best durability index was for briquettes with 30% of adhesive. The compressed density and water resistance index were optimum when using 40% of adhesive. In general, briquettes with a low amount of adhesive have a high-density value, low moisture content, and a long flammability. This research is expected to convey information regarding how to reuse rice waste as an adhesive for briquettes.