Experimental study on load sharing characteristics of long-short CFG pile composite foundation adjacent to rigid retaining wall rotating about its base


Practicing geoengineers and researchers generally consider the load sharing behavior in multi-type pile composite foundation as an important design aspect. On the other hand, due to urbanization, such foundation system in cities will inevitably appear next to supported excavation. This paper discusses the result from relatively large-scale indoor experiment conducted to investigate the load sharing behavior of loaded long-short CFG pile composite foundation behind a neighboring rigid retaining wall undergoing rotation around the bottom. It was found that with progression of wall movement, the hidden load from soil displacement was borne by the piles with marked reduction in soil load sharing. At the end of wall rotation, the percentage of long piles’ head load increment needed to arrive at a new static equilibrium was about 12.57~32.22% while the end bearing increased by more than 97%.  The consequences on the short piles, however, were manifested with an increasing pile head (13.42%) and toe (28.9%) load for the pile far from the wall whereas the closest one experienced a certain increment up to 15×10-4rad wall rotation and finally the head load and end bearing decreased to 8.28% and 12.63%, respectively. The 3D numerical back analysis conducted using FE software ABAQUS yielded the pile – soil stress ratio lower than the value obtained from the experiment but provided great insight into pile settlement characteristics during wall rotation.

Author Biography

Prof. Guo, Yuancheng, Zhengzhou University

Head, School of Civil Engineering, Zhengzhou University

Civil Engineering