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ABSTRACT 

Genetic algorithm (GA) and differential evolution (DE) are metaheuristic algorithms that have shown a 
favorable performance in the optimization of complex problems. In recent years, only GA has been widely used for 
single-objective optimal design of reinforced concrete (RC) structures; however, it has been applied for 
multiobjective optimization of steel structures. In this article, the total structural cost and the roof displacement are 
considered as objective functions for the optimal design of the RC frames. Using the weighted sum method (WSM) 
approach, the two-objective optimization problem is converted to a single-objective optimization problem. The size 
of the beams and columns are considered as design variables, and the design requirements of the ACI-318 are 
employed as constraints. Five numerical models are studied to test the efficiency of the GA and DE algorithms. Pareto 
front curves are obtained for the building models using both algorithms. The detailed results show the accuracy and 
convergence speed of the algorithms. 
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evolution; Genetic algorithm; Optimum cost; Displacement. 
 

INTRODUCTION 

Due to the diversity of materials for reinforced concrete (RC) structures compared to steel structures, the 
optimization of RC structures is more complex than that of steel structures. Some variables in optimizing the RC 
frames include the compressive strength of concrete, the strength of steel bars, size of the cross-sections, the amount 
and percentage of reinforcements, and the other related parameters. The three parameters of the required concrete 
volume, the weight of the required reinforcing bars, and the formwork cost are important in calculating the cost of 
RC structures. It should be noted that labor costs must also be added to the above costs; however, labor costs can be 
included in the formwork costs. Therefore, the task of optimal design of the RC frame is more complicated. 

 
In recent years, metaheuristic algorithms were developed to optimize problems with continuous or discrete 

design variables, and with complex, non-differentiable, or even implicit functions where the classic methods cannot 
be applied to. These algorithms were applied to the optimal design of many types of structures as well as steel and 
RC structures. Kaveh and Zarandi (2019) developed three metaheuristic algorithms for the optimal design of steel-
concrete composite bridges. Farahmand-Tabar and Babaei (2021) applied a multi verse optimizer (MVO) for 
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simultaneous size and shape optimization of trusses. Sarma and Adeli (1998) studied the cost optimization of concrete 
structures. Rajeev and Krishnamoorthy (1998) employed a genetic algorithm-based methodology for design 
optimization of the RC frames. 

 
Chan and Wang (2006) conducted a study on nonlinear stiffness design optimization of tall RC structures under 

service loads. An integrated genetic algorithm with direct search was developed for the optimal design of the RC 
frames by Kwak and Kim (2009). Minimum cost design of RC beams using continuum type optimality criteria 
studied by Adamu et al. (1994). Kaveh and Sabzi (2011) conducted a comparative study of two metaheuristic 
algorithms for the optimal design of reinforced concrete frames. Akin and Saka (2015) developed a harmony search 
algorithm for the optimal design of reinforced concrete plane frames according to the ACI 318-05 provisions (2005). 
Optimal seismic design of RC shear walls-frame structures is studied by Kaveh and Zakian (2014). 

 
Colliding bodies optimization (CBO) and big-bang big-crunch (BB-BC) algorithms were developed for the 

optimal design of the RC frames (Kaveh and Mahdavi, 2015; Kaveh and Sabzi, 2012). Boscardin et al. (2019) 
optimized RC building frames with an automated grouping of columns. Optimal design of RC 3D structures 
considering frequency constraints was performed by Kaveh and Behnam (2013) using charged system search (CSS). 
Esfandiari et al. (2018) developed multicriterion decision-making (DM) and Particle Swarm Optimization (PSO) 
algorithm, called DMPSO, for optimum design of the 3D RC frames. 

 
To solve an engineering optimization problem, a parametric study is the simplest method to find the optimal 

layout, while it needs a huge evaluation of many different designs, which are impossible for large-scale problems. 
Using parametric study method, practical optimal topologies for the RC frames have been obtained and reported in 
the literature for 5-story and 10-story buildings (Babaei, 2015). In another study, using this approach, the number and 
location of trusses for steel structures with core and outrigger-belt truss system optimized considering weight and 
roof deflection as the objective functions (Babaei, 2017). 

 
A few studies have been carried out for multiobjective optimization of the RC frames using evolutionary 

algorithms, while many studies carried out for steel structures (Babaei and Sanaei, 2016). Kaveh (2017) applied the 
enhanced colliding bodies (ECB) algorithm, Camp and Huq (2013) employed the big-bang big-crunch (BB-BC) 
algorithm to optimize the cost and CO2 emission of the RC frames. Babaei and Mollayi (2016) developed a none-
dominated sorting genetic algorithm (NSGA-II) to the multiobjective optimal design of the RC frames, where the 
total weight and the roof displacement were the objective functions. Leyva et al. utilized NSGA-II to earthquake 
design of RC buildings (Leyva et al., 2018). Zou et al. (2007) carried out a study on multiobjective optimization of 
the RC frames for performance-based design. 

 
Multiobjective optimization methods and algorithms are more complicated and time-consuming, and the 

efficiency of these algorithms decreases when applying to large-scale optimization problems. There are, however, 
other methods that convert multiobjective optimization problem (MOP) into single-objective optimization problem 
(SOP) and easily get the optimum solutions set and trade-offs by iterating the main algorithm which is developed for 
the SOP’s (Deb, 2001; D’Errico, 2015; Marler and Arora, 2004; Sanaei and Babaei, 2012; Sanaei and Babaei, 2011). 
Among them, the weighted sum method (WSM) is the most famous one. This article aims to determine the trade-off 
between the cost and the roof displacement of the RC frame structures using the WSM, and to obtain the optimal 
Pareto front through the feasible objective space using GA and DE.  

 
In the next section, the optimization procedure for the RC frames is developed by defining design variables, 

objective functions, and design constraints. Section 3 describes the methods of optimization including GA and DE, 
briefly. Numerical examples including five RC frames are optimized in section 4 using the algorithms and the results 
are compared together and discussed. Finally, section 5 concludes the paper. 
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OPTIMIATION PROCESS 

Objectıve Functıons 
In this paper, the cross-sections of the beams and columns are considered as design variables and then two 

conflicting objective functions are presented in terms of the design variables. To avoid complexity, discrete cross-
sections with acceptable and practical reinforcement ratios are defined according to the code requirements, as 
addressed in section 2.4. The first objective function is the total structural cost and the second one is the maximum 
lateral displacement. For this purpose, the total cost is calculated based on three parameters: the volume of required 
concrete, the amount of the reinforcement bars, and the formwork and labor costs. Therefore, to minimize the cost, 
the first objective function can be presented as follows: 

 
),,( fcsc PPPfF =        (1) 

where cF  is the cost function to be minimized, sP  is the cost of steel bars, cP  is the cost of concrete,  and fP  
is the formwork and labor cost. 

 
The second objective function is the maximum lateral displacement of the roof, shown as roofδ . Therefore, the 

two-objective optimization problem could be defined as follows: 
LpCLbhCLACFMinimize fc

element
ss ++= ∑1     (2) 

roofFMinimize δ=2        (3) 

where cC  is the cost of concrete per unit volume, sC  the cost of steel bars per unit weight, fC  is the formwork 
cost per unit area, L  is the length of the structural elements, and p  is the surface area of the structural elements. 

 

COMPOSITE OBJECTIVE FUNCTION 

As stated earlier, genetic algorithm is a single-objective optimizer algorithm and, therefore, an approach is 
required to solve multiobjective optimization problems. One of the most common methods to solve MOPs is the 
weighted sum method (WSM), in which objective functions are combined to form a single function using a simple 
linear combination (Deb, 2001; Marler and Arora, 2004). In this method, each of the objective functions is assigned 
a weight between 0 and 1, so that the sum of the weights is equal to 1. To find out the Pareto front within the objective 
space, different weights are applied, and the related optimal solutions are obtained and compared. The composite 
objective function could be shown as follows: 

 

21 ).1(. FFF αα −+=        (4) 

where α  is the weight of the first objective function. 
 
Since two objective functions of cost and displacement have different dimensions and units, therefore, they 

cannot be added to each other in the above equation. In other words, the composite objective function should be 
normalized to form a dimensionless single objective function to be minimized. 
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Therefore, the maximum and the minimum values of  cost and displacement are initially calculated and both 
objective functions are normalized using the following equation: 
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where f1 and f2 are the normalized objective functions;  f1min is the minimum amount of the first objective 
function; f1max is the maximum amount of the first objective function; f2min is the minimum amount of the second 
objective function, and f2max is the maximum amount of the second objective function. Note that f1min and f2max are 
calculated by assigning the weakest cross-sections for all of the structural members, while f1max and f2min are obtained 
by considering the strongest cross-sections for the elements. To find out the Pareto optimal solutions, different values 
for α  should be selected, and the Pareto front is obtained by connecting them in the objective space. 

 

PENALTY FUNCTION 

The objective function should be optimized so that all provisions such as the constraints have to be satisfied. On 
the other hand, the provisions related to structural deformation must also be met. From the codes and practical point 
of view, columns of the lower floors should have larger or same dimensions as those of the upper floors. Moreover, 
the diameters and number of reinforcing bars in the upper floor elements should be equal or less than those in the 
lower floors. Other requirements related to the ACI provisions must also be satisfied. 

 
One of the most famous methods to satisfy the constraints in optimization problems is the penalty approach. In 

this method, if a constraint is not satisfied by a solution, the objective functions (cost or displacement) will be 
subjected to penalties. Using this method, in addition to the simplification of the objective function, provisions are 
applied so that the structural cost or displacement will be increased and solutions having penalties will automatically 
have a small chance to be selected as optimal solutions within the next generations. Many methods have been 
proposed to introduce a penalty function; however, in this study, the penalty function is used as follows: 
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where pF  is the penalized objective function, iC  is the penalty function for each constraint, iα is the penalty 
coefficient for each constraint, iV  is the penalty for each constraint, and Φ  is the cumulative amount of the 
penalties. 

 
Penalty coefficient values are obtained according to the problem statement and using a trial and error procedure. 

These coefficients are unique values for each structure. 
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CODE REQUIERMENTS 

According to the ACI (2005), columns must be evaluated using the interaction diagram between axial loads and 
bending moments. If the position of the applied load combination is inside or on the interaction diagram, the element 
will remain safe; otherwise, a stronger cross-section should be used for the element. In this case, the element is 
penalized by the related constraint. There are different methods for calculating penalties. 

 
In this paper, the distance of the points from the reference coordinate is used. For this purpose, the distance of 

one point from the origin is calculated and the allowable value of that point (i.e., the location of the connecting line 
between that point and the origin, with interaction diagram) is also obtained. Finally, the penalty will be calculated 
from the distance between the desired point and the allowed point on its respective distance. In other words, if the 
related point for internal forces is out of the interaction diagram then the objective function is penalized. 

 
Similar code requirements apply to the beams. Since there are no axial loads on the beams, the interaction ratio 

is not necessary for beams. In this case, only provisions for bending moments are applied. 
 
An additional provision that must be met according to the codes is to maintain the reinforcement ratios within 

the allowable range. In other words, the lower and upper limits for reinforcement ratios of the columns should be 
between 08.001.0 ≤≤ ρ . This amount is limited to 06.001.0 ≤≤ ρ  in regions with higher seismic risk and for 
frames with moderate or high ductility levels. Given that the amount of reinforcement is doubled at the overlaps 
through the column, therefore, half of the above upper bound should be considered as the maximum allowable amount 
for reinforcement ratios in the columns. 

 
According to the ACI, the longitudinal reinforcement should also have a distance from the margins which would 

be considered as the cover for the beams and columns. These values are calculated according to the reinforcement 
diameter. The number of reinforcements available in the sections is calculated according to this distance and the 
distance between reinforcements. 

 
Based on the above code requirements, in total 252 sections are considered for beams with a different layout for 

the reinforcing bars, where the cross-sectional sizes are as 300×300, 300×400, 300×500, 350×350, 350×450, 
350×550, 400×400, 400×500, 400×600, 450×450, 450×550, 450×650, 500×500, 500×600, 500×700, 550×550, 
550×650, 550×700, 600×600, 600×650, and 600×700. For columns, 202 sections are assumed with different layouts 
of reinforcing bars as 300×300, 350×350, 400×400, 450×450, 500×500, 550×550, 600×600, 650×650, and 700×700. 

 
The other restrictions, that must be addressed based on the codes, are the coefficients related to crack due to 

bending or axial forces, the code proposes reduction coefficients for the moment of inertia values of beams and 
columns. These coefficients are 0.35 and 0.7 for beams and columns, respectively. 

 

OPTIMIZATION METHODS 

Genetıc Algorıthm 
Developed by Holland (1975), Genetic Algorithm (GA) is one of the metaheuristic algorithms, which has been 

welcomed by many researchers over the past decades. This algorithm is used for solving optimization problems in 
many areas as well as engineering problems. GA has been developed to solve SOPs; however, in this article, using 
WSM it is indirectly utilized to obtain solutions for MOPs. In this section a brief description for GA is addressed; the 
detailed structure of the algorithm is available through the literature. 
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GA starts with initialization to generate a uniformly distributed random population. The algorithm, then, creates 
new generations during iterations using selection, crossover, and mutation operators. In the selection stage, parents 
are randomly selected to create the next generation based on their fitness evaluations. The crossover operator creates 
children (solutions) using the selected parents and in the mutation stage, some of these children are reformed. The 
new generation is now created and the last three operators should be repeated. The number of parents chosen for 
crossover and mutation operations depends on the problem type and the size of the population itself. 

 
It is proven in the literature that during iterations the algorithm finds near-optimal solutions. Famous selection 

methods include roulette wheel, tournament selection, and random selection. By trial and error, the best method can 
be obtained according to the type of problem for choosing the most efficient ones. In this article, the evaluation 
showed that the tournament method had the best performance. Considering the design requirements, in this paper, 
discrete design variables are considered for the beams and columns. Figure 1 displays a pseudocode of GA, which 
has been developed to solve frame optimization problems. 

 

Parameter Definition 

     Set initial parameters: MaxIt, Npop, Pc,Pm, gamma, mu 

Initialization 

     Initiate random population vector 

          )1(),,...,,( )0(
,

)0(
2,

)0(
1,

0 npoptoixxxX npopiiii ==  

     Evaluate the fitness function of each target 

For it=1 to MaxIt  do 

     Crossover 

          Choose pc*npop members of population to create offspring set. 

               alpha=unifrnd(-gamma,1+gamma,size(x1)); 

               y1=alpha.*x1+(1-alpha).*x2; 

               y2=alpha.*x2+(1-alpha).*x1; 

      y1(1,1:nVarB)=max(y1(1,1:nVarB),1); 

      y1(1,1:nVarB)=min(y1(1,1:nVarB),VarMaxB); 

       y1(2,1:nVarC)=max(y1(2,1:nVarC),1); 

     y1(2,1:nVarC)=min(y1(2,1:nVarC),VarMaxC); 

               y1=round(y1); 

               y2(1,1:nVarB)=max(y2(1,1:nVarB),1); 

       y2(1,1:nVarB)=min(y2(1,1:nVarB),VarMaxB); 
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       y2(2,1:nVarC)=max(y2(2,1:nVarC),1); 

      y2(2,1:nVarC)=min(y2(2,1:nVarC),VarMaxC); 

       y2=round(y2); 

     Mutation 

          Choose pm*npop members of population to create Mutation set. 

               nmub=ceil(mu*nVarB); 

               nmuc=ceil(mu*nVarC); 

               jb=randsample(nVarB,nmub); 

               jc=randsample(nVarC,nmuc); 

               sigmab=0.1*(VarMaxB-VarMinB); 

               sigmac=0.1*(VarMaxC-VarMinC); 

               y=x; 

               y(1,jb)=(x(1,jb))'+sigmab*randn(size(jb)); 

               y(2,jc)=(x(2,jc))'+sigmac*randn(size(jc)); 

               y(1,1:nVarB)=max(y(1,1:nVarB),VarMinB); 

               y(2,1:nVarC)=max(y(2,1:nVarC),VarMinC);   

               y(1,1:nVarB)=min(y(1,1:nVarB),VarMaxB); 

               y(2,1:nVarC)=min(y(2,1:nVarC),VarMaxC); 

               y=round(y); 

     Selection 

          Create new set including npop, popc(crossover) and popm (mutation) 

          Evaluate all members in the new set 

          Sort the members 

          Choose the best members of new set size of npop 

     Set it=it+1 

End for 
 

Figure 1. The pseudocode for GA. 
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DIFFERENTIAL EVOLUTION 

Differential Evolution (DE), for the first time, was suggested by Storn and Price (Storn and Price, 1995; Storn 
and Price, 1997) as a simple approach for global optimization of problems with continuous variables. During the past 
two decades, DE algorithms have been developed more and they have emerged as one of the most competitive 
evolutionary algorithms. DE and its variants have been applied to solve optimal design problems in different fields 
successfully (Ho-Huu et al., 2015; Babaei and Mollayi, 2020). Similar to GA, differential evolution is a population-
based algorithm, and unlike GA, however, it uses real number decision variables; therefore, no encoding is needed 
to convert strings from real to binary. 

 

Parameter Definition 

     Set initial parameters: MaxIt, Npop, F,Cr 

Initialization 

     Initiate random population vector 

    )1(),,...,,( )0(
,

)0(
2,

)0(
1,

0 npoptoixxxX npopiiii ==  
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          beta=(it/MaxIt)+beta1; 
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               beta=beta2; 
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                    U=x1+F.*(best-x1)+F.*(x2-x3);  % Current to best/1 

               else  

       U=x1+F.*(best-x1)+F.*(best-x2); % Current to best/2   

               end 

          else 

               if unifrnd(0,1)<0.5 

                    U=x4+F.*(x2-x3);                          % rand/1 

               else 

                    U=x4+F.*(x2-x3)+F.*(x5-x6);            % rand/2  

               end 

          end 

          best= best member of populations. 

          x1, x2,x3,x4,x5,x6= random member of population. 

     Crossover 

          Cerate offspring vector. For each target vector u 

          Pcr=((MaxIt-it)/MaxIt)*Pcrmax; 

               if Pcr<Pcrmin 

                    Pcr=Pcrmin; 

               end 

          jb1=randi([1 nVarB]); 

          jc1=randi([1 nVarC]); 

          jb2=find(rand(1,nVarB)<Pcr); 

          jc2=find(rand(1,nVarC)<Pcr); 

          Jb=[jb1 jb2]; 



175Mehdi Babaei and Masoud Mollayi

          Jc=[jc1 jc2]; 

          x(1,Jb)=U(1,Jb); 

          x(2,Jc)=U(2,Jc)    

          V=x; 

     Evaluate the offspring to compare with parents. 

     Selection 

          Apply selection for each offspring vector, if mutant vector is better than  

          the main member, mutant forward to new population, otherwise the main 

          member sent to new population to create next generation. 

     Set it=it+1 

End for 

 
Figure 2. The pseudocode for DE. 

 
The first step in DE is random initialization. After population initialization, DE starts with three basic steps of 

mutation, crossover, and selection. The iterations stop when a termination criterion is satisfied, which is usually the 
number of iterations or the same solutions through the last populations. Details of the operations of DE could be 
found in the literature (Storn and Price, 1995; Storn and Price, 1997; Ho-Huu et al., 2015; Babaei and Mollayi, 2020). 
The pseudocode for the developed DE is given in Figure 2, which utilizes four different mutation strategies to increase 
the efficiency of the algorithm. 

 

NUMERICAL EXAMPLES 

In this study, five building models are optimized using the GA and DE algorithms; however, only three of them 
are reported in this manuscript, because of the limitations of the journal. The models are 2D RC frames extracted 
from 3D practical buildings. For this purpose, based on the research carried out by Babaei (2015), two different 
practical topologies with spans lengths of 5.6m and 7.5m are considered for the building plan to locate two and three 
vehicles between columns, respectively. The plan area of each building is about 529 m2; and 5, 10, and 14-story 
structures are considered to evaluate the RC frames, as shown in Figures 3 and 4. The height of each floor is set 3.5m, 
for residential applications. The soil type under the foundation is of type (II); the building site is in Tehran, which is 
a city with very high seismicity risk.  The dead and live loads of the floors are 5 kN/m2 and 3 kN/m2, while they are 
assumed as 5 kN/m2 and 1.5 kN/m2 for the roof, respectively. According to the ACI design code (2005), the following 
load combinations are applied: 

                    U=x1+F.*(best-x1)+F.*(x2-x3);  % Current to best/1 

               else  

       U=x1+F.*(best-x1)+F.*(best-x2); % Current to best/2   

               end 

          else 

               if unifrnd(0,1)<0.5 

                    U=x4+F.*(x2-x3);                          % rand/1 

               else 

                    U=x4+F.*(x2-x3)+F.*(x5-x6);            % rand/2  

               end 

          end 

          best= best member of populations. 

          x1, x2,x3,x4,x5,x6= random member of population. 

     Crossover 

          Cerate offspring vector. For each target vector u 

          Pcr=((MaxIt-it)/MaxIt)*Pcrmax; 

               if Pcr<Pcrmin 

                    Pcr=Pcrmin; 

               end 

          jb1=randi([1 nVarB]); 

          jc1=randi([1 nVarC]); 

          jb2=find(rand(1,nVarB)<Pcr); 

          jc2=find(rand(1,nVarC)<Pcr); 

          Jb=[jb1 jb2]; 
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The concrete compressive strength is set MPafc 28' =  and the yielding stress for reinforcing bars is considered 
as MPaf y 420= . 

 
 

 

 

 

 

 
 
 
 
 
 
 

Figure 3. The first building models group.                      Figure 4. The second building models group. 
 

Different methods can be considered as a termination criterion for the algorithm, including convergence rate or 
the number of iterations. Based on the evaluations implemented in this work, the maximum iteration number is 
selected as the best method to stop the algorithm. It should be noted that the cost of the unit volume of concrete is 
assumed as 28.5 USD; the cost of reinforcing bars is considered as 46 USD per kN, and the formwork cost is 
considered as 4.3 USD per unit area. 

 

THREE-BAY 5-STORY FRAME 

In this model, a three-bay 5-story frame has been evaluated. The spans are 7.5 meters and the height of each 
story is 3.5 meters. Similar to the previous example, beams are grouped into three types, and columns are grouped 
into four types. The structure is subjected to the same loads as considered in the previous example. The topology, 
loading, and the grouping of the beams and columns are shown in Figure 5. 

5.6 5.6 5.6 5.6 7.5 7.5 7.5 
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Figure 5. Topology, loading, and members grouping scheme of the three-bay 5-story frame. 

 

Figure 6. Convergence histories obtained for the three-bay 5-story frame. 
 

 Figure 6 shows the convergence history of the normalized objective function for the best solutions of the 
selected scenarios obtained using the algorithms, where the normalized objective function is composed of the 
normalized cost and displacement functions. The results of GA and DE are given for comparison. The Pareto front 
is obtained for this building model using GA and DE as shown in Figure 7. Comparing these trade-offs, the results 
obtained by GA are better than the results of DE. 
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Figure 3. The first building models group.                      Figure 4. The second building models group. 
 

Different methods can be considered as a termination criterion for the algorithm, including convergence rate or 
the number of iterations. Based on the evaluations implemented in this work, the maximum iteration number is 
selected as the best method to stop the algorithm. It should be noted that the cost of the unit volume of concrete is 
assumed as 28.5 USD; the cost of reinforcing bars is considered as 46 USD per kN, and the formwork cost is 
considered as 4.3 USD per unit area. 

 

THREE-BAY 5-STORY FRAME 

In this model, a three-bay 5-story frame has been evaluated. The spans are 7.5 meters and the height of each 
story is 3.5 meters. Similar to the previous example, beams are grouped into three types, and columns are grouped 
into four types. The structure is subjected to the same loads as considered in the previous example. The topology, 
loading, and the grouping of the beams and columns are shown in Figure 5. 
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Figure 7. Pareto front obtained for the three-bay 5-story frame. 

 

Figure 8. Maximum stress ratio of members for the selected scenarios of the three-bay 5-story frame. 
 
Figure 8 displays the maximum stress ratio of the members obtained using GA and DE for four of the selected 

scenarios within the Pareto front. Although there are small differences between the ratios obtained by GA and DE, 
the best solutions obtained by genetic algorithm have more stress ratios. In other words, GA found better frames in 
terms of the normalized objective function, as can be seen in the figure. On the other hand, as expected, the interaction 
ratios are increased when the importance of the cost function is increased by raising the alpha. 
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Figure 9. Optimal objective function obtained by DE for three-bay 5-story frame (100 independent runs). 
 
Results of 100 independent runs of four different scenarios are illustrated in Figures 9 and 10, obtained by DE 

and GA, respectively. Table 2 shows the minimum, maximum, mean, and SD values of these runs. In this example, 
the convergence speed and the optimal designs of GA are slightly better than the optimal solutions of DE. The best 
designs obtained by GA are 0.5%, 0.4% and 0.4% optimal than the designs of DE for the three scenarios (alpha=0.2, 
0.6 and 1.0), respectively. The SDs obtained for 100 independent runs of DE and GA are considerably small, by less 
than 3.0% and 2.0%, respectively, which prove the robustness of both algorithms, especially DE. 

 

  

Figure 10. Optimal objective function obtained by GA for three-bay 5-story frame (100 independent runs). 
 
 

 

Figure 7. Pareto front obtained for the three-bay 5-story frame. 

 

Figure 8. Maximum stress ratio of members for the selected scenarios of the three-bay 5-story frame. 
 
Figure 8 displays the maximum stress ratio of the members obtained using GA and DE for four of the selected 

scenarios within the Pareto front. Although there are small differences between the ratios obtained by GA and DE, 
the best solutions obtained by genetic algorithm have more stress ratios. In other words, GA found better frames in 
terms of the normalized objective function, as can be seen in the figure. On the other hand, as expected, the interaction 
ratios are increased when the importance of the cost function is increased by raising the alpha. 
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Table 1: The obtained values for three-bay 5-story frame (100 independent runs). 
 

DE GA 

Alpha 0 0.2 0.6 1.0 Alpha 0 0.2 0.6 1.0 

Min 
1.05E-

06 
0.09139

9 
0.20205 0.29116 Min 

1.05E-
06 

0.09089
8 

0.20118
1 

0.29007
5 

Mean 
1.05E-

06 
0.09284

9 
0.20703

2 
0.30251

9 
Mean 

1.05E-
06 

0.09159
2 

0.20284
0 

0.30060
3 

Max. 
1.05E-

06 0.09657 0.21752 0.32065 Max. 
1.05E-

06 
0.09323

6 
0.20697

5 
0.31196

6 

Standard 
deviation 

2.17E-
22 (0%) 

0.00105
9 

(1.1%) 

0.00387
0 

(1.9%) 

0.00872
4 

(3.0%) 

Standar
d 

deviatio
n 

2.17E-
22 (0%) 

0.00065
9 

(0.7%) 

0.00139
3 

(0.7%) 

0.00583
8 

(2.0%) 

NFE=20030. NFE=20000. 

 

FOUR-BAY 10-STORY FRAME 

The topology, the members grouping numbers, and the applied loads of a four-bay 10-story frame are shown in 
Figure 11. In this example, type I is related to the beams of the first to third floors; type II is for beams of four to six 
floors; type III is for the beams of the seventh to ninth floors, and type IV is related to the beams of the roof level. 
The columns are grouped so that, type I and type II are for the first three floors of internal and external columns, 
respectively. Similarly, the fourth to sixth floors are assumed as of two types of columns and the four upper floors of 
the structure are grouped into two other types, including the internal and external columns. 
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Figure 11. Topology, loading, and members grouping scheme of the four-bay 10-story frame. 
 

The convergence histories of the selected scenarios are drawn in Figure 12, where the results of GA and DE are 
given for comparison. As shown in the figure, the optimization procedure using GA is faster than DE in many cases, 
and GA could find the best solutions in lower iterations. The Pareto front is obtained and shown in Figure 13, 
comparing GA and DE results, which shows the efficiency of GA. In general, the results obtained using GA are better 
than the results of DE. 

Table 1: The obtained values for three-bay 5-story frame (100 independent runs). 
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FOUR-BAY 10-STORY FRAME 

The topology, the members grouping numbers, and the applied loads of a four-bay 10-story frame are shown in 
Figure 11. In this example, type I is related to the beams of the first to third floors; type II is for beams of four to six 
floors; type III is for the beams of the seventh to ninth floors, and type IV is related to the beams of the roof level. 
The columns are grouped so that, type I and type II are for the first three floors of internal and external columns, 
respectively. Similarly, the fourth to sixth floors are assumed as of two types of columns and the four upper floors of 
the structure are grouped into two other types, including the internal and external columns. 
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Figure 12. Convergence histories obtained for the four-bay 10-story frame. 

 

Figure 13. Pareto front obtained for the four-bay 10-story frame. 
 
Figure 14 illustrates the interaction ratios of beams and columns obtained using GA and DE for the selected 

scenarios selected from the first rank of the Pareto front. The ratios of the best solutions obtained by GA are bigger 
than those obtained by DE. It means that GA found better cross-sections compared to DE. It is also clear from Figure 
13 that the results of GA are better, especially when the importance of the cost function is increased by raising the 
alpha. 
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Figure 14. Maximum stress ratio of members for the selected scenarios of the four-bay 10-story frame. 
 

 

Figure 15. Optimal objective function obtained by DE for four-bay 10-story frame (100 independent runs). 

 

Figure 12. Convergence histories obtained for the four-bay 10-story frame. 

 

Figure 13. Pareto front obtained for the four-bay 10-story frame. 
 
Figure 14 illustrates the interaction ratios of beams and columns obtained using GA and DE for the selected 

scenarios selected from the first rank of the Pareto front. The ratios of the best solutions obtained by GA are bigger 
than those obtained by DE. It means that GA found better cross-sections compared to DE. It is also clear from Figure 
13 that the results of GA are better, especially when the importance of the cost function is increased by raising the 
alpha. 
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Results of 100 independent runs of four different scenarios using DE and GA are depicted in Figures 15 and 22, 

respectively. Although the convergence speed of GA is better than DE, however, the best designs of DE are 0.1%, 
0.5%, and 1.7% optimal than designs of GA for the three scenarios (alpha=0.2, 0.6, and 1.0), respectively. Table 3 
displays the related values of these runs, where the resultant SDs are considerably small (less than 2.3%). 

 

 

Figure 16. Optimal objective function obtained by GA for four-bay 10-story frame (100 independent runs). 
 

Table 2: The obtained values for four-bay 10-story frame (100 independent runs). 
 

DE GA 

Alpha 0 0.2 0.6 1.0 Alpha 0 0.2 0.6 1.0 

Min 6.03E-
07 0.08565 0.16105 0.20605 Min 6.03E-

07 
0.08577

3 0.16188 0.20949 

Mean 6.03E-
07 

0.08643
1 

0.16566
2 

0.21493
5 Mean 6.03E-

07 
0.08687

3 
0.16693

0 0.217305 

Max. 6.03E-
07 0.08815 0.17139 0.22182 Max. 6.03E-

07 
0.08810

6 0.1693 0.22929 

Standard 
deviation 

1.08E-
22 (0%) 

0.00075
2 

(0.9%) 

0.00205
2 

(1.3%) 

0.00469
5 

(2.3%) 

Standard 
deviatio

n 

1.08E-
22 (0%) 

0.00056
3 (0.6%) 

0.00163
6 (1.0%) 

0.004839 
(2.3%) 

NFE=35010. NFE=35030. 
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FOUR-BAY 14-STORY FRAME 

According to the design codes, buildings up to 50 meters in height could be analyzed using the static analysis 
method. Therefore, a four-bay 14-story building model is tested by the algorithm as the last case study to show the 
efficiency of the method. The topology, loading, and the grouping of the elements for this model are given in Figure 
17. The columns are grouped into eight groups and the beams are grouped into five groups. The trade-off between 
two objective functions is displayed in Figure 18, and the convergence histories for the selected scenarios are shown 
in Figure 19. Figure 20 illustrates the interaction ratios for the beams and columns obtained for the optimal solutions 
using GA and DE. Based on the results, GA shows adequate efficiency to find global optima, in terms of the trade-
off between objective functions, robustness, and stress ratios of the elements. 

 

 

Figure 17. Topology, loading, and member grouping scheme of the four-bay 14-story frame. 

 
Results of 100 independent runs of four different scenarios using DE and GA are depicted in Figures 15 and 22, 

respectively. Although the convergence speed of GA is better than DE, however, the best designs of DE are 0.1%, 
0.5%, and 1.7% optimal than designs of GA for the three scenarios (alpha=0.2, 0.6, and 1.0), respectively. Table 3 
displays the related values of these runs, where the resultant SDs are considerably small (less than 2.3%). 

 

 

Figure 16. Optimal objective function obtained by GA for four-bay 10-story frame (100 independent runs). 
 

Table 2: The obtained values for four-bay 10-story frame (100 independent runs). 
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Figure 18. Pareto front obtained for the four-bay 14-story frame. 
 

 

Figure 19. Convergence histories obtained for the four-bay 14-story frame. 
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In this example, the convergence speed of GA is higher than DE and the results of 100 independent runs show 

that it is capable to find the best designs which are 1.4%, 1.0%, and 4.2% optimal than designs of DE for the three 
scenarios (alpha=0.2, 0.6, and 1.0), respectively, as shown in Figures 21 and 22. Table 5 displays the related results, 
where the maximum SD’s are obtained 2.8%, and 2.1% for 100 independent runs of DE and GA. 

 

Figure 20. Maximum stress ratio of members for the selected scenarios of the four-bay 14-story frame. 
 
 
 

 

Figure 18. Pareto front obtained for the four-bay 14-story frame. 
 

 

Figure 19. Convergence histories obtained for the four-bay 14-story frame. 
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Figure 21. Optimal objective function obtained by DE for four-bay 14-story frame (100 independent runs). 
 

 

Figure 22. Optimal objective function obtained by GA for four-bay 14-story frame (100 independent runs). 
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Table 3: The obtained values for four-bay 14-story frame (100 independent runs). 
 

DE GA 

Alpha 0 0.2 0.6 1.0 Alpha 0 0.2 0.6 1.0 

Min 8.22E-07 0.085174 0.13715 0.10957 Min 8.22E-07 0.084025 0.13577 0.10515 

Mean 8.22E-07 0.085787 0.140849 0.11546 Mean 8.22E-07 0.084185 0.137720 0.108572 

Max. 8.22E-07 0.086496 0.14289 0.12038 Max. 8.22E-07 0.08428 0.14189 0.11171 

Standard 
deviation 

2.17E-22 
(0%) 

0.000370 
(0.4%) 

0.001210 
(0.9%) 

0.003105 
(2.8%) 

Standard 
deviation 

2.17E-22 
(0%) 

9.71E-05 
(0.1%) 

0.001750 
(1.3%) 

0.002176 
(2.1%) 

NFE=44240. NFE=46840. 

 

CONCLUSION 

In this study, optimal design of reinforced concrete moment resisting frames is investigated considering two 
objective functions and using two different algorithms: genetic algorithm and differential evolution. Since the single-
objective algorithms are utilized to solve two-objective optimization problem, the objective functions are converted 
to a single combined function using the weighted sum method (WSM). Two objective functions of the total structural 
cost and the maximum roof displacement are considered as objective functions for optimization. Following 
normalization of objective functions, the final composite objective function is obtained and considered as the main 
objective to be minimized. 

 
The cross-sectional area of the beams and columns are assumed as design variables. A list of limited number of 

cross-sections is utilized as discrete design variables for structural members. To test the efficiency of GA and DE 
five 2D RC frames are investigated and the results of optimal frames are given and compared. To illustrate the trade-
off between the objective functions, Pareto front is obtained. Four scenarios are extracted from the Pareto front to 
investigate the efficiency of the methods in more details using the results of 100 independent runs of the algorithms. 
The main findings are listed as below. 

 
1.   The results of both algorithms are extremely similar. In almost all cases there is only 0%-2% difference 

between the optimal results of DE and GA. 
2.   Considerably small SDs (by less than 5.2%) obtained from the 100 individual runs prove the efficiency 

and robustness of the algorithms. 

 
 

 

 

Figure 21. Optimal objective function obtained by DE for four-bay 14-story frame (100 independent runs). 
 

 

Figure 22. Optimal objective function obtained by GA for four-bay 14-story frame (100 independent runs). 
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3.   The trade-off curves between the two objective functions obtained for all examples using both 
algorithms are very smooth and approximately the same. 

4.   In most cases, although the speed of convergence of GA is higher than DE, however, the final optimal 
designs of DE are slightly better than GA. 

5.   The stress ratios are decreased when the displacement objective function is more important (case: 
alpha=0.0). In this case, the best designs of DE are approximately identical to the best solutions of GA. 

6.   The most difference between the optimal results of DE and GA are obtained when the importance of 
the cost objective function is increased. In this case, the stress ratios are going to approach the 
maximum possible amount (case: alpha=1.0). 

7.   As a future work, the application of the approach could be evaluated for tall RC buildings with or 
without shear walls. 
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3.   The trade-off curves between the two objective functions obtained for all examples using both 
algorithms are very smooth and approximately the same. 

4.   In most cases, although the speed of convergence of GA is higher than DE, however, the final optimal 
designs of DE are slightly better than GA. 

5.   The stress ratios are decreased when the displacement objective function is more important (case: 
alpha=0.0). In this case, the best designs of DE are approximately identical to the best solutions of GA. 

6.   The most difference between the optimal results of DE and GA are obtained when the importance of 
the cost objective function is increased. In this case, the stress ratios are going to approach the 
maximum possible amount (case: alpha=1.0). 

7.   As a future work, the application of the approach could be evaluated for tall RC buildings with or 
without shear walls. 
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