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ABSTRACT 

This work discusses the development of tool condition monitoring system (TCMs) during milling of AISI 
stainless steel 304 using sound pressure and vibration signals. Response Surface Methodology (RSM) was used to 
design the experiments. The various milling parameters and vegetable-based cutting fluids (VBCFs) were optimized 
to reduce the surface roughness and flank wear. The experimental results reveal the direct relationship between the 
flank wear and sound and vibration signals. The various statistical parameters were extracted from the measured 
signals and given as input data to train the artificial neural network (ANN). From the developed ANN model, the 
flank wear was predicted with the mean squared error (MSE) of 0.0656 mm. 
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INTRODUCTION 

Tool wear prediction and replacement depend on traditional calculation of wear data from the past years. To 
fabricate good quality products with minimal cost, a Tool Condition Monitoring system (TCMs) is necessary. The 
tool condition has been monitored with various sensors called as sensor fusion model (Dimla, 2000). The TCMs were 
developed with various features taken out from machining force, cutting sound, spindle vibration, and current signals. 
The extracted features were combined to calculate the flank wear (Ghosh et al., 2007).  Online TCMs were designed 
using Support Vector Machine (SVM) with statistical features of cutting force, torque, AE, and vibration signals. The 
tool condition was estimated from the SVM results (Kaya et al., 2012). TCMs were designed using SVM with wavelet 
features of AE and sound signal and attained better classification accuracy (Zhang et al., 2015).  

 
Different clustering methods were applied for online TCM. The wavelet features were extracted from AE, 

cutting force, and vibration signals and found the enhanced performance of fuzzy clustering than other methods 
(Torabi et al., 2016). Recently, during milling process, tool wear was supervised with cutting force, cutting sound, 
spindle motor current, and vibration signals. The sensor signals were combined together in FIS, and the tool condition 
was assessed and reached a conclusion to change the tool/machining conditions (Cuka and Kim, 2017). The various 
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decision making algorithms were used to forecast the surface roughness and wear (Shankar et al., 2019b). A review 
of TCMs was discussed by Mohanraj et al. (2020). 

 
Vegetable based cutting fluids (VBCFs) are environment-friendly, inexhaustible, and harmless. The destructive 

effects of commercial cutting fluids (CFs) can be significantly reduced by employing VBCFs as CFs (Alves and de 
Oliveira, 2006). Vegetable-oil–based hybrid nano-CFs were developed with the nano-additives (CNT/MoS2) with 
sesame, neem, and mahua oils. In turning process, sesame-oil based hybrid nano-CFs with CNT/MoS2 enhanced the 
machining performance in terms of flank wear, surface roughness, cutting force, and temperature compared to dry 
and commercial CF (Pasam and Gugulothu, 2018). 

 
During machining of TC4 alloy, nano-graphene-scattered VBCF (LB 2000) considerably reduces the cutting 

force, cutting temperature, surface roughness, and surface micro-hardness (Li et al., 2019, Li et al., 2018). Various 
VBCFs were used for milling the Al 7075-T6 composite and observed that castor oil was performed better than other 
oils in terms of reduction in flak wear (Mohanraj et al., 2019).  

 
TCMs were designed using various sensors and commercial cutting fluids. The development of TCMs for 

milling of Stainless Steel (SS) 304 with VBCFs was rarely found in the literature. The VBCFs appreciably decrease 
the wear and vibration during the milling process. The objective of this work is to develop the TCMs to monitor the 
tool condition with VBCFs as a CF for milling of SS 304 with cutting sound and vibration signals.  

 

MATERIALS AND METHODS 

The keyway milling experiment was conducted on LMill-55 CNC vertical machining center (Make: LMW, 
Coimbatore). The SS 304 (50 mm x 50 mm x 100 mm) was considered a workpiece, and milling experiments were 
performed with three-flute TiN coated cemented carbide insert (XDHT-090308 HX-PA 120) of ϕ 25 mm cutter. 
Figure 1 shows the milling setup used for this work.  

 

 
 

Figure 1. Experimental setup. 
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The control parameters, namely, spindle speed, feed rate, and depth of cut with three levels, were considered. 
The experimental design matrix was developed using response surface methodology (RSM) (Gur et al., 2020). The 
surface roughness and flank wear were assessed with surface roughness tester SJ–410 and Tool Makers’ Microscope, 
respectively. The design matrix along with experimental results was presented in Table 1. 

 
Table 1. Experimental design. 

 

Exp. No. Spindle speed  
(A) (rpm) 

Feed  
(B) (mm.rev-1) 

Depth 
(C) (mm) 

Surface 
roughness(µm) 

Flank wear 
(mm) 

1 750 0.48 1.00 0.88 0.0298 

2 1000 0.48 0.75 0.682 0.0332 

3 750 1.18 0.75 0.844 0.0331 

4 750 0.48 0.75 0.789 0.0325 

5 899 0.90 0.90 0.911 0.0322 

6 750 0.48 0.75 0.689 0.0321 

7 750 0.48 0.75 0.753 0.0322 

8 601 0.90 0.90 1.102 0.0328 

9 899 0.06 0.60 0.75 0.0352 

10 899 0.06 0.90 0.3703 0.0326 

11 500 0.48 0.75 0.600 0.0324 

12 601 0.90 0.60 0.528 0.0351 

13 750 0.23 0.75 0.565 0.0334 

14 750 0.48 0.75 0.651 0.0310 

15 750 0.48 0.75 0.656 0.0333 

16 750 0.48 0.50 0.839 0.0338 

17 601 0.06 0.60 0.471 0.0351 

18 750 0.48 0.75 0.661 0.0312 

19 601 0.06 0.90 0.431 0.0271 

20 899 0.90 0.60 0.633 0.0277 
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The instruments used for measuring the surface roughness and flank wear were given in Figure 2. First, the 
commercial cutting fluid was used, and the milling parameters were adjusted to reduce the surface roughness and 
flank wear. Later, the milling process was performed with optimum condition and VBCFs such as neem, cotton seed, 
castor, palm, groundnut, and rapeseed. For each VBCF, the experiments were replicated for three times, and the 
results were obtained. The CF, which enhances the surface quality and tool life, was selected. Finally, the milling 
process was performed with selected VBCF and optimum condition to measure the vibration (g) and sound pressure 
(Pa) signals. The different tool conditions like fresh, working, and dull were chosen.  

 

 
 

Figure 2. a) Measurement of surface roughness. b) Flank wear. 
 
Sound pressure (Pa) and workpiece vibration (g) signals were measured using a Microphone (Make: GRAS) 

and a Tri-axial accelerometer (Make: Dytran) in that order. The microphone was mounted at a distance of 30 cm from 
cutting zone to measure the sound pressure signal and safeguard the sensor from coolant. The signals were acquired 
using NI 9274 data acquisition card, and the obtained signals were processed using LabVIEW software.  

 

RESULTS AND DISCUSSION 

Analysis for Surface Roughness 

Analysis of variance (ANOVA) is used to identify the most significant process parameters (Gür, 2013). ANOVA 
for surface roughness was shown in Table 2. The main effect of feed (B) (Shankar et al., 2016, Subramaniam and 
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physical significance. Previous work (Sahin and Motorcu, 2005, Vikrama et al., 2015, Khorasani and Yazdi, 2015, 
Zhang et al., 2016) reported that the feed was deciding factor for surface quality. The spindle speed and depth had 
very less impact on surface roughness. The same effect of depth of cut was found in milling of AA7039/Al2O3 
composites (Karabulut, 2015).  
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Table 2. Analysis for surface roughness. 
 

Source Sum of 
squares df Mean Square F Value p-Value 

Prob>F % Contribution 

Model 0.5623 9 0.0624 21.06 < 0.0001 -- 

A 0.0053 1 0.0053 1.801 0.2092 0.90 

B 0.2261 1 0.2261 76.232 < 0.0001 38.21 

C 0.0183 1 0.0183 6.200 0.0320 3.11 

AB 0.0115 1 0.0115 3.90 0.0765 1.96 

AC 0.0505 1 0.0505 17.02 0.0021 8.53 

BC 0.2021 1 0.2021 68.128 < 0.0001 34.15 

A2 0.0109 1 0.0109 3.706 0.0831 1.86 

B2 0.0264 1 0.0264 8.913 0.0137 4.47 

C2 0.0356 1 0.0356 12.002 0.0061 6.02 

Residual 0.0296 10 0.0029    

Lack of Fit 0.0129 5 0.0025 0.776 0.6063  

Pure Error 0.0167 5 0.0033    

Cor. Total 0.5920 19     

R2= 0.9499; Adjusted R2 =0.9048;  predicted R2  = 0.7554:  Adequate Precision=19.38 

 

Analysis for Wear 

ANOVA result for wear (Vb) is presented in Table 3. Depth (C), effect of speed and feed (AB), effect of feed 
and depth (BC), and effect of speed and depth (AC) were found as considerable cutting parameters for Vb. Flank 
wear is dependent on interaction effect of spindle speed and feed (AB). Here, the combined effect of spindle speed 
and feed had the highest percentage of 25.20 complied by the combined effect of BC that had 22.69 %. The influence 
of spindle speed and depth (AC) had 20.53 % contribution. The depth (C) had significant contribution of 21.44 %. 
The result of spindle speed and feed alone does not have any statistical significance on flank wear (Kaya et al., 2012). 
From the literature, the most significant parameters for flank wear were A, B, A2, and B2 (Arokiadass et al., 2012).  
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Table 3. Analysis for flank wear. 
 

Source Sum of squares df Mean Square F Value p-Value 
Prob>F % Contribution 

Model 8.26x10-5 6 1.38x10-5 21.234 < 0.0001 -- 

A 6.10x10-7 1 6.1x10-7 0.9404 0.3499 0.67 

B 1.87x10-7 1 1.87x10-7 0.2889 0.6000 0.21 

C 1.95x10-5 1 1.95x10-5 30.1077 0.0001 21.44 

AB 2.29x10-5 1 2.29x10-5 35.3905 < 0.0001 25.20 

AC 1.87x10-5 1 1.87x10-5 28.8203 0.0001 20.53 

BC 2.07x10-5 1 2.06x10-5 31.8573 < 0.0001 22.69 

Residual 8.43x10-6 13 6.48x10-7    

Lack of Fit 4.84x10-6 8 6.05x10-7 0.8425 0.6060  

Pure Error 3.59x10-6 5 7.18x10-7    

Cor. Total 9.10x10-5 19     

R2= 0.9015;  Adjusted R2 =0.8560;  predicted R2  = 0.7877;  Adequate precision=17.89 

 

Optimization of Milling Parameters 

The optimal milling parameters for machining AISI SS 304 within the chosen range of milling parameters were 
found, which minimize the surface roughness (Ra) and flank wear (Vb) during milling process. The RSM desirability 
function was utilized to optimize the process parameters. The numerical optimization was utilized to find the points, 
which maximize the desirability function. From RSM optimization, a speed of 601 rpm, a feed rate of 0.06 mm. rev-
1, and a depth of 0.88 mm were identified as optimal process parameters for machining AISI stainless steel 304. The 
verification trial was performed, with obtained optimum condition and experimental values being compared with 
predicted values. The result was given in Table 4.  
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After finding the optimum condition, the VBCFs were used a CF, and the milling process was conducted thrice. 
The flank wear was recorded, and the average value was used to select the CF. Table 5 presents the flank wear details 
for different VBCFs. High viscosity of VBCFs ensured more stable lubrication across the process temperature range, 
reduced the cutting zone temperature, and formed a thin layer. This behavior of VBCFs reduces friction between 
workpiece and tool, which leads to possible reduction of heat produced at tool–workpiece interface. The strong 
intermolecular interactions provide a more stable viscosity and are also flexible to changes in temperature (Gerpen 
et al., 2004). Moreover, the viscosity of castor oil is more than other VBCFs. This reduced the friction among tool 
and workpiece and easily removed the heat generated at tool–workpiece interface. During machining process, castor 
oil exhibits least wear and roughness compared to other VBCFs. So, castor oil exhibits better performance than other 
VBCFs and is selected as a CF for design of TCMs. 

 

DESIGN OF TCMS FOR AISI STAINLESS STEEL 304 

Effect of Flank Wear on Sound Signal 

The acquired sound pressure signal during machining with different cutting tool is shown in Figure 3.  The 
maximum value of sound produced for worn tool was 6 Pa. The stainless steel 304 was one of the difficult-to-cut 
materials, and the presence of harder particles may be the reason for the higher amplitude of sound pressure. Figure 
3 shows that the raise in flank wear leads to a raise in sound pressure. Once the tool lost its effective cutting edge, 
tool–work part contact area was increased and not capable of manufacturing the superiority products. The similar 
tendency was noticed in literatures Kopač and Šali (2001), Ghosh et al. (2007), and Raja et al. (2013).  

 

 
 

Figure 3. Sound pressure values for different tools. 
 
The sound value for various tool condition clearly illustrated that the sound for dull tool was higher than that of 

the other two tools. While the cutting tool turns faulty, it augments the contact region and nose radius. At that moment, 
extra area was in contact with milling surface. That leads to elevating the sound level. The variation in milling 
parameter and incidence of any fault (breakage, built up edge) should alter the level of sound pressure (Tekıner and 
Yeşılyurt, 2004). The initial cutting sound was little high owing to initial interaction of cutting tool and workpiece. 
In dull tool, the contact area was increased due to the increase in flank wear, and it produced the maximum sound 
pressure (Shankar et al., 2019a). 
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Effect of Flank Wear on Vibration Signals 

The resultant vibration for different tools was presented in Figure 4. To analyze the consequence of all three-
axis vibration, the resultant vibration was considered. The vibration in Y axis had a significant effect since it was the 
feed direction of the machine. The new tool had a least resultant vibration in the range of 0–3 g. During the early 
phase of machining, the tool is sharp, and there is only interaction between the nose radius and work part. So, vibration 
was lesser than that of other tools (Mohanraj and Shanmugam, 2021).  

 

 
 

Figure 4. Resultant vibration signatures for different tools. 
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Figure 5. Optical image of the cutting tool. (a) New tool. (b) Dull tool. 

After finding the optimum condition, the VBCFs were used a CF, and the milling process was conducted thrice. 
The flank wear was recorded, and the average value was used to select the CF. Table 5 presents the flank wear details 
for different VBCFs. High viscosity of VBCFs ensured more stable lubrication across the process temperature range, 
reduced the cutting zone temperature, and formed a thin layer. This behavior of VBCFs reduces friction between 
workpiece and tool, which leads to possible reduction of heat produced at tool–workpiece interface. The strong 
intermolecular interactions provide a more stable viscosity and are also flexible to changes in temperature (Gerpen 
et al., 2004). Moreover, the viscosity of castor oil is more than other VBCFs. This reduced the friction among tool 
and workpiece and easily removed the heat generated at tool–workpiece interface. During machining process, castor 
oil exhibits least wear and roughness compared to other VBCFs. So, castor oil exhibits better performance than other 
VBCFs and is selected as a CF for design of TCMs. 

 

DESIGN OF TCMS FOR AISI STAINLESS STEEL 304 

Effect of Flank Wear on Sound Signal 

The acquired sound pressure signal during machining with different cutting tool is shown in Figure 3.  The 
maximum value of sound produced for worn tool was 6 Pa. The stainless steel 304 was one of the difficult-to-cut 
materials, and the presence of harder particles may be the reason for the higher amplitude of sound pressure. Figure 
3 shows that the raise in flank wear leads to a raise in sound pressure. Once the tool lost its effective cutting edge, 
tool–work part contact area was increased and not capable of manufacturing the superiority products. The similar 
tendency was noticed in literatures Kopač and Šali (2001), Ghosh et al. (2007), and Raja et al. (2013).  

 

 
 

Figure 3. Sound pressure values for different tools. 
 
The sound value for various tool condition clearly illustrated that the sound for dull tool was higher than that of 

the other two tools. While the cutting tool turns faulty, it augments the contact region and nose radius. At that moment, 
extra area was in contact with milling surface. That leads to elevating the sound level. The variation in milling 
parameter and incidence of any fault (breakage, built up edge) should alter the level of sound pressure (Tekıner and 
Yeşılyurt, 2004). The initial cutting sound was little high owing to initial interaction of cutting tool and workpiece. 
In dull tool, the contact area was increased due to the increase in flank wear, and it produced the maximum sound 
pressure (Shankar et al., 2019a). 
 



Decision support system for tool condition monitoring in milling process using artificial neural network150

Design and Development of TCMs using ANN 

The widely used Backpropagation Neural Network (BPNN) was employed for estimating the tool condition in 
milling process. The advantages of using BPNN algorithm are the ability to model, estimate mathematically, and 
match the nonlinear model (Taskin et al., 2008). The statistical parameters like RMS, kurtosis, skewness, and mean 
of sound pressure and the resultant vibration were used as inputs for NN predictor. The flank wear was considered as 
the output data, and it was given as target. The TRAINLM (Levenberg-Marquardt backpropagation) function was 
selected as NN training function. Learning and performance functions of LEARNGDM (gradient descent momentum 
weight/bias learning function) and Mean Squared Error (MSE) were considered, respectively. TANSIG (hyperbolic 
tangent sigmoid) transfer function was employed to estimate the output from its network input.  

 
The number of hidden nodes was started with 10 and gradually increased up to 30 to obtain the optimal 

performance. The number of iterations was set as 1000. The training process started with the above said initial 
conditions. The best performance was obtained at 5th iteration with the best validation performance of 0.0656 mm 
MSE. Figure 6 shows performance graph of the developed NN estimator. The 75 % of data (1050 samples) were 
utilized for training purposes, and 25 % (450 samples) were used for testing and validation purposes (Mohanraj et 
al., 2021b). The lower value of MSE provides better performance. 

 

 
 

Figure 6. ANN performance graph. 
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Figure 7. Regression plot. 

 
When MSE is closer to zero, this indicates that the designed estimator has no errors. Here, the designed NN 

estimator had MSE of 0.0585 mm during training phase. During testing phase, the NN had MSE of 0.06788 mm. This 
performance level is satisfied for TCMs application. Further, the prediction accuracy can be enhanced by applying 
machine learning algorithms (Krishnakumar et al., 2018a, Krishnakumar et al., 2018c, Krishnakumar et al., 2018b). 

 
The regression coefficient for the designed NN estimator was presented in Figure 7. For training phase, testing 

phase, and validation, the regression coefficient was 0.9716, 0.9494, and 0.9459, respectively. The overall regression 
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(Mohanraj et al., 2019).  
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Figure 6. ANN performance graph. 
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area between tool and work material. Also, it increases tool nose radius, and the tool becomes dull to remove the 
material from the workpiece.  

 

CONCLUSION 

The keyway milling experiments were carried out on AISI SS 304, using cemented carbide insert (WIDIA 
XDHT-090308HX-PA120) for tool wear estimation, and the process was monitored using sound pressure and 
vibration signals. An effort was geared up to design a simple low-cost TCMs, using sensor fusion technique. The 
results achieved from the experiment were presented as follows: 

 
• Feed was the most significant factor for surface quality.  
• Surface roughness was augmented with raise in feed. Larger feed values augment the temperature and 

reduce the bonding strength in the work material, which affects the surface quality. 
• The temperature at tool-workpiece contact was increased, while speed and depth were increased, which 

decreases the tool life 
• The speed of 601 rpm, feed of 0.06 mm.rev-1, and depth of 0.88 mm were obtained as optimal process 

parameters. 
• Castor oil exhibits the minimum flank wear. Due to high viscosity, cutting fluid greatly reduces the 

cutting zone temperature and hence reduces the flank wear. 
• The output of NN was accessed to monitor the tool wear. When NN result reaches the value of 3, cutting 

tool has to be substituted for further operations. 
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