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ABSTRACT
This paper aims at studying two advanced techniques that are used in control theory of nonlinear affine systems. 

These later techniques tackle the problem of the trajectory tracking with high steady state performances. The objective 
of this work is to compare and analyze the dynamical behavior of the desired output when controlled by the gain 
scheduling method and afterward with a neural control approach. Both techniques are evaluated through a numerical 
simulation study of a photovoltaic system, which is characterized by hard nonlinear features and challenges. The 
efficiency and limitations of both techniques are accurately discussed.
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INTRODUCTION
Control of nonlinear systems can be carried out by many techniques, which have been adapted in several industrial 

applications. Most of these techniques have a common objective of a desired output trajectory tracking (Sato & 
Peaucelle, 2013; Chaouech et al., 2019, Sardellitti et al., 2013).

With the help of the digital computational methods, it is possible, to a certain extent, to overcome the limitations 
shown by the different analytical approaches. Amongst all the approaches, the nonlinear gain scheduling approach 
can be cited (Souza & Osowsky, 2013; Dahleh et al., 2000), as it has generated a lot of interest, because of its practical 
efficiency. The key idea of the gain scheduling approach is to represent the original nonlinear description using a 
set of simple linear models (Feng, 2006; Hamdy, 2013). Hence, this technique is quite popular, when the controlled 
process undergoes many variations during the operation, which is an extremely regular occurrence. Likewise, it 
is impossible to design any global controller, which would be able to work satisfactorily in the whole state space 
(Palm et al., 1996). Furthermore, the controlled system performance decreased when the controller is unable to 
track the various changes, which marred the operational conditions. Moreover, the gain scheduling approach helps 
in exploiting the linear control tools for the case hardly nonlinear plants description (Charfeddine & Jerbi, 2012).  
Additionally, it displays a better flexibility and a simple design for the closed loop-controlled system (Palm et al., 
1996; Palm et al., 2000).

It is seen that the gain scheduling control can be synthesized by interpolating the local controllers for the stationary 
and the isolated states (Souza & Osowsky, 2013; Hespanha, et al., 2007). However, some of the regulators could be 
ineffective due to their instability with regards to the hidden coupling and inherent uncertainties in the studied models 
(Souza & Osowsky, 2013). Essentially, the heuristic implementation of this approach could ensure neither the stability 
nor the convergence of the controlled output.
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In this study, the gain scheduling technique is combined with the input-output linearization formalism (Isodiri,  
1998; Liu & Tong, 2015; Chemachema & Belarbi, 2010) to enhance the performance of the gain scheduling method 
(Charfeddine & Jerbi, 2012, Jebri et al., 2011).

The stability of the closed loop-controlled system is established using a non-Lyapunov stability method (Genesio 
et al. 1985). Additionally, the design method applies the reverse trajectory method to maximize the stability areas 
surrounding the operating points (Genesio et al., 1985, Jerbi, 2017). 

In this study, the investigated gain scheduling strategy is based on the formalism of the state feedback exact 
linearization methodology and the non-Lyapunov scheme to extend operational asymptotic stability regions (Genesio 
et al., 1985). The major goal of this scheme consists of overcoming the limitations perceived with the input-output 
linearization technique as the nonminimum phase propriety characterizing many practical nonlinear plants (Yu & 
Verhaegen, 2018). Hence, the performance of the approach is based on its dependence on all the equivalent models 
used for the different operating points (Palm et al., 1996). Decreasing the operating point number, result in an enhanced 
and guaranteed tracking accuracy (Charfeddine & Jerbi, 2012). 

A main motivation of this study is to carry out a comparative analysis of the enhanced gain scheduling method with 
a neural network control approach.

Recently, an important effort is made in designing the feedback control systems, which are seen to imitate the 
biological system reasoning. The “universal model-free control” have garnered a lot of interest lately, as they do not 
require a mathematical modeling to monitor the plant but imitate the biological process behavior for learning about 
the systems that they supervise on-line, hence, improving the performance automatically. The different plants include 
the fuzzy logic control that imitates the reasoning and linguistic functions, and the artificial neural networks, that are 
dependent on the biological neuronal structures having interconnected nodes. Till date, the theories and the applications 
of the nonlinear network structure in the feedback control are reported in the literature. It is understood that the neural 
networks present an extension of the adaptive control processes for the nonlinearly parameterized learning systems. 
The neural network tracking controller with the help of the backstepping process has been investigated in (Sadati et 
al., 2007; Kanellakopoulos et al., 1991).

This paper provides an evaluation framework for comparing two approaches. Hence, the continuity of the gain 
scheduling control performance is maintained in spite of various changes taking place in the process with respect to 
the modelling and primary aspects, which characterize the continuous system models having a neural control. The 
result of the comparative analysis is intended to pave the way for designing a novel neural network gain scheduling 
nonlinear control. The performance of the new strategy can be defined in terms of response swiftness and accuracy of 
the steady state regime while ensuring the stability of the closed loop system.

The complete paper has been organized as follows: Section 2 presents the important results of the neural network 
control, while Section 3 describes the analytical gain scheduling control technique. In Section 4, we described the 
mathematical model for the photovoltaic system. Section 5 presented the simulation study for the evaluation of the 
performance of the trajectory tracking. Lastly, in Section 6, we have presented all the concluding remarks.

NONLINEAR GAIN SHEDULING CONTROL TECHNIQUE
Here, the scheduling gain design is based on the input-output linearizing control method. Furthermore, the stability 

analysis is established according to a non-Lyapunov method for the different operating points. The arising synthetic 
technique used the reverse trajectory method advantages for enlarging the attraction domains surrounding the operating 
points (Charfeddine et al., 2013).

Studied system modeling
The class of single-input, single output systems is considered. This class is characterized by its propriety to be 

accurately linearizable. This class could be identified based on its representation as the state space canonical form for 
the following controllability:
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                                                                                   (1)

wherein F,  represent the 2 vector functions that were characterized by  and 

 .

Let us consider the variation model, which has the following description:

                                                                                                    (2)       

wherein Xn refers to the nominal state vector in the operating point, while Un is the control input variable. 

Eq. (1) represents the nonlinear state model and it was easily transformed into the variation polynomial model that 
is as follows:

                                                                          (3)

Fundamentals of the gain scheduling technique
Let us consider the system described by Eq. (1). The linearization issue using the feedback technique involves 

computing the smooth functions  and  with 
 
along with the diffeomorphism  where .

For the SISO nonlinear system described by Eq. (1) and having a relative degree, r, in X0 (Isodiri, 1998; Deutscher, 
2005), the system can be written as 

                                                                                         (4)

If the relative degree r is such that, r < n in X0, the system is converted to the normal form, after determining 
functions,  wherein the function values for X0 are as follows:

                                                                   (5)

For  in the above equation,  represents the function Lie derivative for  with regards to
.

Then, the diffeomorphism 
 
is expressed as

 

                                                                                        (6)
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The dynamic compensator,  values with n-r components can be determined using Eq. (5).

The resulting linear equivalent system characterized by the transformed variables,  is described by 
Brunovsky’s equivalent form given by

                                                          (7)

wherein the pair of matrices  is controllable and the linearizing manipulated variable v is written as

                                                                                         (8)

with;

                                                                 (9)

Main steps of the control algorithm
Thereby, the scheduled gains strategy can be synthesized following a four steps algorithm: 

Ø Step 1: Synthesis and calculation of the analytical transformation

Step 1 is mainly performed to compute the diffeomorphism: 

                                                        (10) 

The feedback is used for regulating the variation model near the origin (the regulation of the process in the operating 
points neighborhood is carried out in the same methodology manner). 

Ø Step 2: Synthesis of the variation model:

This step is based on the described form given by Eq. (2) and Eq. (3).  

Ø Step 3: Calculation of the Dynamic feedback:

Expressing the polynomial representation for the dynamic feedback u, the components of the input-output 
linearizing control can be computed as follows:

                                                                    (11)

wherein the quantities of 
 
and 

 
are expressed under the polynomial form as follows:

                                                                                  (12)

The control v for the Brunovky model is determined using a simple pole placement. Hence:

                                                                                 (13)

wherein  is the control gain vector, which was determined using pole placement. Therefore, the 
synthesis of the polynomial dynamic feedback u can be obtained by combining Eq. (11), Eq. (12) and Eq. (13) and 
results in 
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                                                                        (14)

After carrying out algebraic manipulations, the control can be written as follows:

                                                                     (15)

wherein

    

 

,                              

Replacing the u by its polynomial expression of the system (15) in Eq. (3), leads to the model autonomous form, 
which is expressed as

                                                                                 (16)

wherein          

Ø Step 4: Synthesis of the output trajectory tracking control:

In this step, the control strategy seeks a primary stability region near the operating point 
 
for a desired trajectory 

 that ensures the asymptotic stability. Conventional methods in linear control theory provide a region of attraction, 
where the radius is significantly reduced for industrial processes like electric machinery and chemical reactors. This 
weakness imposes fixing a big number of operating points that must be studied for any desired trajectory . As a 
result, a substantial calculation time is needed to compute the control input. This restricts the implementation of the 
designed technique for a process with a slow dynamic .

To assess this weakness, a technique for regions of attraction maximization is used. (Charfeddine & Jerbi, 2012). 
As a non-Lyapunov techniques the reverse trajectory method is implemented to overcome the limitations due to the 
computational time. 

Finally, the control strategy algorithm formulated in 4 steps, as described previously, has been summarized using 
the following flowchart (Figure1).
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Figure 1. Flowchart of the gain scheduling control Strategy.

THE NONLINEAR COMPENSATION TECHNIQUE USING NEURAL NETWORKS
Selected neural network control topologies

In the feedback control design, it is very important to ensure the tracking performance and the boundedness, or the 
internal stability for all the variables. If these are not ensured, serious problems can occur in the closed-loop systems, 
which can include the instability and the signal unboundedness, and further causes a failure of complete destruction of 
the system. (Werbos, 1989; Narendra & Parthasarathy, 1990) first proposed applying the NN for the control systems. 
The neural network control possessed 2 main thrusts: Approximative Dynamical Programming that applies the NN 
for approximately solving the optimal control problems, and the neural network in a closed-loop feedback control 
(Narendra & Parthasarathy, 1991). A few of these topologies have been derived from the general topologies in the 
adaptive control (Landau & Silveira, 1979). Basically, there are 2 types of feedback control topologies- direct and the 
indirect techniques. In the case of the indirect NN control techniques, 2 functions are present; in the identifier block, 
the NN system is tuned for learning about the dynamics of an unknown plant, while the controller block applies this 
data for controlling the plant. The Direct control is seen to be more effective and it involves a direct tuning of the 
parameters present in the adjustable NN controller. The main limitation in applying the NN for the feedback control 
purpose involves the selection of a proper control system structure, followed by the demonstration of mathematically-
suitable techniques for tuning the NN weights such that the performance and the closed-loop stability are ensured 
(Campos & Lewis, 1999).

In this work, the indirect topology will be exploited. An advanced tracking control method will be merged with a 
NN compensation.
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LINEARIZATION USING THE FEEDBACK CONTROL DESIGN AND 
NEURAL NETWORKS

Here, the study primarily focuses on solving the problem of nonlinear output tracking using the feedback 
linearization concept. A technique, which is based on process neural network modelling, will be implemented. 

It is interesting to mention that all the recent studies proved that the neural control laws could guarantee the system 
asymptotic stability using the single-layered neural network (Sadegh, 1993).

Tracking problems and error dynamics
In this study, the linearizing feedback technique for addressing the nonlinear output tracking issues is exploited. 

The objective is as follows: 

Let us consider the required output . Thereafter, the output tracking design consists of determining the control 
law , which allows the process output to track the desired trajectory with a satisfactory steady state behavior and 
asymptotic stability. 

Let us consider the vector , which is defined as

                                                                               
(17)

Furthermore, it is also assumed that the vector  is measurable with the below property:

                                                                                   (18)

let us determine the state vector error as , while the filtered error is

                                                                                      (19)

wherein  is the vector with coefficients that are randomly selected such that the error, e, tends 
exponentially towards 0 when the filtered error,  tends towards 0.

The filtered error derivatives are as follows: 

                                                                                   (20)  

wherein 

Neural network structure
The neural network equation is represented as follows:

                                                                           (21)

where  and  represented the weights of the neural network,  was the no. of neurons present 
in the hidden layer while  referred to the error term, which was dependent on the  and decreased with 
an increase in .

A network threshold was introduced in the vector x, and also, the activation function selected for the neurons in the 
layer corresponded to the general sigmoid function that was used frequently in the earlier published studies.
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The weight generalized matrix is defined as 

                                                                                               
(22)

Practically, the weight of the network  and , were seen to be bounded by the constant parameter, which helped 
in stating that

                                                                                                      
(23)

wherein  was a given parameter.

The concept of limiting the network weights was seen to be developed from the robust control processes. But, 
despite the absence of any algorithm, which specified the terminal , this was a reasonable assumption made in the 
available neural network literature.

Synthesis of the neural control law
In this section, the function  and  will be estimated using neural network design. Therefore, the control law 

was determined as 

                                                                              (24)

wherein the estimates 
 
and 

 
are the estimated function  and  and the auxiliary term v was 

expressed as 

                                                                                                 (25)

It can be seen that 
 
cannot be 0, hence, a technique for bounding the control signal while implementing 

the linearizing feedback input will be used. In Figure 2, the overall control scheme is shown.

Figure 2. The closed loop control structure using the neural networks.

SIMULATION ANALYSIS
This section is reserved to study the control problem of a photovoltaic system (Andoulssi et al. 2013) using the 

gain scheduling technique and the neural network approach, which are both presented in the previous sections. This 
section will start with the photovoltaic model description than the implementation of both control techniques will be 
addressed. 
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Description of the system
Figure 3 describes the functional diagram for the considered photovoltaic system. This system comprises a DC / DC 

reducing converter, a photovoltaic generator, and a DC motor pump.

Figure 3. Functional diagram of the considered photovoltaic system. 

Photovoltaic generator model
In general, a diode model is used to represent the electrical behavior of the photovoltaic cell. In the present model, 

the photovoltaic cell that uses the electric current generator is represented. This description is equivalent to a current 
source that is parallel to the diode.

Similar to the junction diode, the photovoltaic diode also has a nonlinear current-voltage relationship (Miamouni 
et al., 2004 Andoulsi et al., 1999). The current is linked to the solar generator voltage by the following equation: 

                                                                            (26)

wherein  and  represent, respectively, the current and output voltage.

The model remaining parameters are listed in Table 1. The current PV generator includes 2 parallel connecting 
channels (50 W). Each channel contains 4 panels in series, where every panel consists of 36 connected cells (Figure 4). 

Figure 4. Equivalent circuit of an ideal solar cell.

Table 1. Different parameters.

Thermodynamic potential  

Pv generator photocurrent proportional to the irradiance level
Reverse current of the diode saturation of a photovoltaic cell.
Electron charge

T Temperature of the solar panel (°K)
n The ideal PN junction factor

Constant of Boltzman ( ) 
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Converter model
A solar generator is a form of a nonlinear process, which generates a maximal power at a particular operating 

voltage and current point. To control the delivered power to the Dc motor pump a DC-DC converter is inserted in 
series between the pump and the PV generator. Figure 5 shows the circuit diagram for the considered photovoltaic 
system.

Figure 5. Equivalent circuit diagram of the photovoltaic system.

It can be noted that the convertor contains a circuit control driver related to power transistor ( ) along with the 
free-wheel diode ( ). The generated power is transmitted to the load using the switching transistor  that is turned 
on / off periodically using an external control circuit, identified as the Pulse Width Modulation (PWM). Eq. (26) is 
describes the mean output voltage:

                                                                                                        
(27)         

wherein  and  represent the output and the converter-input voltage, respectively, and  refers to a switch cycle. 
Based on Eq. (26), it is obvious that the output voltage can be controlled by varying the  value of the chopper duty 
cycle. For varying , the PWM design control of the process is applied (Packiam et al. 2015). Assuming the low power 
loss assumption, where the photovoltaic generated power is equivalent to the load consumed power, it comes:

                                                                                                     (28)

                                                                                                   (29)

DC motor pump model 
The DC motor pump is a designed as a simple permanent magnet machine. In this study, it is assumed that the 

constant flow is present for all the operational points. In the machine model,  and  represent the resistance and the 
inductance. Furthermore, the equation below describes the transfer of energy between the electrical and the mechanical 
parts, which is shown as a relative proportion between the f.e.m. and the angular velocity:

                                                                                                        (30)

The DC motor is attached to a centrifugal pump that for simplicity is described by the couple:

                                                                                                         (31)



A Benchmarking analysis of analytical and advanced nonlinear tracking control techniques260

Therefore, the photovoltaic system model is written as

                                                                    (32)

  Writing system of Eq. (32) under the standard form yields 

                                                                                        (33)

Wherein  is the state vector comprising the motor current, motor speed and photovoltaic generator voltage. 

Hence, one has

  

Estimating the relative degree r by deriving the equation output y until the control u appears:

                                                          

(34)

 

The control input appears from the first derivation, which concludes the relative degree of the photovoltaic system 
is r=1.

Consequently, the control input can be written in the following form: 

Wherein  

When the form of the dynamic feedback u polynomial equation is obtained, it is possible to establish the expression 
of the input-output linearizing control that yields: 

                                                           

(35)       
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The main control achievement involves maintaining the optimal voltage for photovoltaic generator ( ). 

Neglecting the reference variation, the objective can be fulfilled by selecting the control under the following form:

 
                                                                                                (36)

 wherein k refers to the control gain vector, which can be determined with a pole placement design.

Truncating the polynomial development to the third order for the photovoltaic model, and considering the nominal 
operating points , leads to the polynomial model below: 

                                                                                    (37)

Furthermore, the polynomial form of the diffeomorphism truncated to the third order can be written as: 

                                                                               
(38) 

Finally, the manipulated variable u is given by

                                                      (39)

Simulation results 
Table 2 presents the numerical values for the different parameters studied. The objective of this section is to 

evaluate the performance and efficiency of the studied control methods. The addressed control problem focuses on 
the tracking problem of a photovoltaic power system. In this study, all simulations are carried out using the MATLAB 
2018 software.

Table 2. Numerical values of the model parameters.

Photovoltaic Generator

DC Motor

The first step of this study focused on the evaluation of the local performance of both controllers. The variation 
model represented by equation (37) is controlled to evaluate the local performance around an operating point. The 
state variables x1, x2 and x3, are depicted in Figures 6, 7 and 8.
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Figure 6. Dynamics of the variables x1 (red): Neural case, (blue) Scheduling case).

Figure 7. Dynamics of the variable x2 ((red): Neural case, (blue) Scheduling case).

Figure 8. Dynamics of the variable x3 ((red): Neural case, (blue) Scheduling case).

In these figures, the convergence of the state variables is ensured by both control techniques. The overall performance 
is quite satisfactory; with the state variables’ dynamics being asymptotically stable with a swift transitory response and 
accurate steady state regime.

The figures have highlighted the acceptable dynamic behavior with a realistic the manipulated variable regulation. 
Likewise, it can be seen that the controlled variables for both cases are attracted towards the equilibrium and their 
dynamics does not indicate an inadmissible excess and overshooting. However, in terms of swiftness, a higher speed 
is noted for the scheduling gain-controlled variables. This result can be explained by the assumptions made while 
selecting the model truncating order and sampling time selection. Additionally, the feedback linearizing technique is 
very effective in compensating the plant nonlinearities as compared to the polynomial neural network.

Figure 9 represents the control inputs. The latter manage to stabilize the system dynamics within a limited time 
period with a reduced control effort. In particular, the neural network stabilizes the system dynamics within 0.2 
minutes; however, the scheduling control stabilizes the state variables within 0.3 minutes. Table 3 summarizes the 
key parameters that were obtained by qualitatively analyzing the response times for the transient and steady-state 
responses. regime. The scheduling approach offers a settling time of 3 s, while the neuronal approach displayed a 
settling time of 0.12 s. 

Likewise, the gain scheduling technique helped in achieving a rise time in 0.2 s however the rise time is 0.09 s for 
the neural control approach. 
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Figure 9. Control input dynamics u ((red): Scheduling case, (blue) Neural case).

Table 3. Numerical results of the qualitative comparative study.

Gain Scheduling approach Neuronal approach

Settling Time 0.3s 0.12s

Overshooting No No

Rise Time 0.2s 0.09s

As a first outcome the neural control approach displayed better local elementary results as compared to the gain 
scheduling approach. Furthermore, satisfactory dynamical results were noted with a smoother response time for the 
model state variables.

In the next stage of this analysis study, the learning process based on the multilayer neural networks and using the 
gradient approach to assess the weights by decreasing the costs will be addressed. 

Here, the learning process is known as the learning with the error retro-progression. For carrying out this process 
and conducting the online learning, the following steps are used: 

The structure of the neural networks is shown in Figure 1 - 
The estimation of the error is performed using an approach that decreases the output squared learning error. As a 

matter of fact, the error can be defined as: 

Figure 10 presents the simulation results. It can be seen that the quadratic error for all the state variables tends 
towards 0; hence, the system stability can be guaranteed by applying the neuronal method.

Figure 10. Square error for the different states.
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The final stage of this study is reserved for the key studied problem in this paper, which is the trajectory tracking 
control problem. The desired output trajectory is shown in Figure 11. This trajectory defines a standard physical 
behavior in terms of the system characteristics and features.

Figure 11. Desired output trajectory. 

After carrying out the simulation study, the results are presented in Figure 12. A perfect agreement can be noted 
for all different trajectories. 

Figure 12. Output tracking trajectory ((black): Desired output trajectory, (red): Neural output trajectory, 
(blue): Gain scheduling output trajectory).

Correspondingly, the transient responses show that the real outputs for both techniques converge towards the 
desired output trajectory while the behaviour of the controlled variables does not show an inadmissible dynamic.

To emphasize the performances of the gain scheduling and the neuronal approaches, it is interesting to note that 
the tracking error is less than 2% for the scheduled gain approach. However, for the neural control, an error of < 1.6% 
was measured. This result is depicted in Figure 13.

 The controllers were evaluated in real time. Therefore, the total time for carrying out these tasks did not greatly 
affect the system variable dynamics or the desired output trajectory.

Figure 13. The tracking error ((blue): neuronal approach, (red): gain scheduling approach).
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Figure 14, describes the control input dynamics for the studied approaches. The control signals dynamics are 
physically satisfactory. The figure showed that there was no undesired overshoot or an undesirable saturation for both 
approaches. Similarly, a limited control effort for the system state variable stabilization can be noted. 

Figure 14. Control inputs dynamics ((blue): Neuronal case, (red): Scheduling case).

It is perceived that the tracking error was quite weak; however, a tracking error is still seen in this study. Moreover, 
this tracking error did not show a significant physical effect. Decreasing its value can be assured by increasing the 
number of the operating points on the desired output trajectory. These overall results helped in concluding that the 
studied approaches are comparable in performance level and practical efficiency.

Likewise, it can be also observed that the neural approach showed better results than the gain scheduling method. This 
is due to an enhanced methodology in selecting of controller gains by combining the subsequent operating points. 

CONCLUSIONS
In this paper, a critical comparative analysis of an analytical approach with an advanced computing control 

technique is performed. The performance analysis is conducted for a PV solar power plant. Recent scheduled gain 
control theory is efficiently exploited as an analytical control strategy. Such theory helped assess and compute the 
operating state feedback gains of a stabilizing controller, which contributes to bringing the power electrical system to 
its nominal operating conditions following desired output trajectory constraints. The gain scheduling approach relied 
on the formalism of feedback linearization, gain scheduling methodology, variation based-model concept, and a non-
Lyapunov stability method. It can be assumed that the gain scheduling technique can fulfil the objective of a trajectory 
tracking with high performance standard. Furthermore, it could be seen that it was conceptually simple; therefore, it 
could be easily applied.

 The simulation results reflect that the designed controller offers enhanced dynamic performances than various 
available methods in the literature. This is in terms of attenuated oscillations, minimum settling time numerical values, 
peak undershoot, peak overshoot, various performance indices and minimum numerical values for damping ratio. The 
maximization of the attraction domain around equilibrium points substantiates the output dynamic stability behavior 
of the systems compared to several prevalent control techniques. Nevertheless, the gain scheduling approach, due to 
the drawback of the linearization approach, ensures the design strategy efficiency only in regions, which are relatively 
close to the operating points.

On the other hand, the neuronal control approach displayed satisfactory results in recovering and compensating the 
hard nonlinearities of the studied plant. However, it has restrictions related to the training phase and its data structure. 
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Indeed, several parameters must be taken into account as the prediction of the operating points, the dynamical stability 
behavior and the optimal control gains.

Lastly, the following practical points can be addressed as further extensions for developing this work: it is promising - 
to estimate uncertain states and different model parameters for implementing the control laws and ensuring the 
fault detection with disturbances rejection.
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