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ABSTRACT
The parallel manipulators are skilled for their precision manufacturing but need optimized design to get maximum 

dexterity that will lead towards better industrial production rates. The 3-DOF tricept is chosen to utilize its maximum 
capabilities for its functionality. Three performance  parameters  conditioning  index,  workspace  volume,  and  global  
conditioning index are used  to obtain  optimum design  variables of  tricept  mechanism. With a view to compare them 
in terms of processing effort, particle swarm optimization (PSO) is applied here. Finally, multiobjective optimization 
with two strategies weighted and epsilon constraint is performed to control the different parameters simultaneously 
and also to give validation of previously obtained GA based optimum design values of tricept mechanism.

Keywords: Inverse Kinematics; Dexterity; Evolutionary Algorithms; Multi Objective Particle Swarm Optimization 
(MOPSO); Epsilon Constraint Strategy; MATLAB.

INTRODUCTION1. 
Manipulators are expressed as subpart of robot (Spong, 1995), which are controlled by the motors and drives. They 

have programming based numerical control (He et al., 2007). Parallel manipulators are well known for their rapid 
acceleration and immediate precise movements (Shah, Kausar, and Farooq, 2018). They are more flexible than serial 
manipulators and also have the feature of bearing high loads and provide high stiffness (Zhang, 2010) (Y D Patel 
and George, 2012).On the other hand, end effecter, usually known as platform in parallel manipulators, is limited to 
a certain workspace resulting in limitation to work in far-off places. These kinds have complex inputs and outputs 
solutions. It is difficult to find high number of singularities in parallel manipulators, although these singularities are 
static (YJ Lou, Liu, and Li, 2005). These closed loop parallel manipulators possess less inertial effects. 

Classification of parallel manipulators includes symmetric, planar, spherical, and spatial (Y D Patel and George, 
2012). An example like Gough Stewart Platform is a 6-DOF basic architecture and has spherical prismatic spherical 
architecture (SPS) explained by Gupta et al. (Mehta and Dasgupta, 2011). 3-DOF revolute (RRR) architecture has 
been well explained by Gosselin and Guillot (1991) and YJ Lou et al. (2005). This architecture has all joints revolute 
and does not possess translations. Orthoglide mechanism has been illustrated by Chablat and Wenger (2003). This 
structure moves in the x, y, z directions having fixed orientation and is heavily used for the machining purposes. 
Tricept manipulators, which are the center of discussion in this work, have three legs with prismatic actuated design 
and a center leg that has a UPS architecture, which is connected from base to the moving platform above. They have 
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prismatic actuators. These types of structures have been well explained by Wang et al. (2003) and Hosseini, Daniali, 
and Taghirad (2011).

Performance Parameters1.1 

Performance or dexterity can be evaluated in terms of ease of mobility and reachability (Shao et al., 2017). Dexterity 
is actually the measure of sensitivity between the end effector and the actuator movement (YJ Lou et al., 2005) (Pond 
and Carretero, 2008). Conditioning index provides the sensitivity ratio for dexterity (Rezania and Ebrahimi, 2017).The 
conditioning index can also use the singular values of Jacobian matrix, so it better explains the singularities and links 
nearness to singularities. Furthermore, it also explains the error in the design and stiffness (YJ Lou et al., 2005). 

Global Conditioning Index is based on the requirement whether the user needs the local conditioning or the 
global conditioning. If the user wants the results to be with respect to global conditioning, they should use the global 
conditioning index for its simulation results (Clement; Gosselin, 1988).

The  workspace  of  a  parallel  manipulator  is  another  useful  parameter  in  determining  its  trajectories. The 
workspace is defined as the volume of the region end effectors that can occupy all throughout its maximum reach 
(Arrouk, Bouzgarrou, and Gogu, 2010). Reachable workspace is the volume of space in which the end effecter can 
reach all its points through at least one orientation, whereas the most important term of the dexterous workspace is 
the volume of the space in which the end effecter can reach its all points from all possible orientations. Basically, the 
dexterous workspace is the subset of the reachable workspace. There are two main types of determining the workspace. 
The first one is finding the design of the manipulators with the prescribed workspace (Merlet, 1997) (Gosselin and 
Guillot, 1991), and the second is to maximize the workspace by changing the geometry of a workspace (YJ Lou et al., 
2005); both will be discussed here.

Optimization1.2 

Optimization is being used extensively in automation. To achieve user demands, the manufacturer needs a design 
that will enhance its production rate. Smaller changes in design can bring significant results. In short, the selection 
of design must ensure its maximum capabilities. For that purpose, different approaches are being used for the 
optimization. Evolutionary algorithm (EA) will be the prime focus to get optimized design variables. Conventional 
single objective deals with the optimization of parameters independently (Mei et al., 2018). Here are some points for 
better understanding of how to use the evolutionary algorithms for this task (Carretero et al., 2000) (Deb n.d.). EAs are 
used here because of the uncertainty in the solutions. Secondly, multiple design variables are involved. Thirdly, there 
are complex constraints for calculations, and there are more numbers of local and global optimum points, so the use 
of evolutionary algorithms is inevitable here. 

LITERATURE2. 
Parallel manipulators caught attention in the mid-nineties. James E Gwinnett made a spherical parallel robot 

platform, and this was indeed very interesting invention for the entertainment industry. In 1947, Dr. Eric Gough 
presented his research on parallel robots, and it was functional in 1954, which was variable six-strut octahedral 
hexapod. It paved the way for the scientists to have that strong existing base for the parallel robots. The universal tire 
testing machine was built  by Dr. Eric Gough (Gough 1962), and it has the property of inspecting the tire characteristics 
under combined loading effects. Multiaxis simulation table was of that kind, and it was built by Dr. Hubert. Later 
Stewart in 1965 made a flight simulator model that was likely to be a octahedral hexapod. Meanwhile, Klaus Cappel 
made a motion simulator. It was actually the same octahedral hexapod.

Tsai made a valuable contribution in describing the difference between the serial and parallel manipulators (Tsai, 
1999). Designing parallel robots depends entirely on the optimum performance parameters. Clément Gosselin (1988) 
presented the general idea for the calculation of conditioning and global indexes. They had also used searching 
technique for the design optimization. Some used sequential quadratic and some had used the genetic algorithms 
for the tasks. In the mid-nineties, Richard et al. optimized the workspace based on dexterity and GCI for 3-DOF 
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translational platform (Stamper, Lung-Wen Tsai, and Walsh n.d.). In the start of 20th century, hybrid serial and parallel 
manipulator optimization was explained by Tanev (2000). After that, Siciliano (1999) proposed the tricept robot 
kinematics and did its workspace optimization using different parameters. later, Hui Cheng worked on the dynamics 
and control of parallel manipulators (Cheng, 2001). YJ Lou et al. (2005) compared different manipulators and their 
optimization based on dexterity. In 2007, Carretero et al. expressed the quantitative analysis of manipulators based 
on the dexterity and dexterous workspace. On the basis of dexterity, Huang (2011) designed the planar manipulator. 
Binbin et al. (2011) tried to develop 3-DOF UPU kinematic structure and worked on the optimization and singularities. 
In  2012,  Zhang and Fang (2012) proposed a 3-DOF PRS optimization based on interval analysis.

Recent advancements include multiobjective optimization for the special applications of industry, as well as 
medical sector. A study compared the different optimization methods for Process Parameters of Machining (Yusup, 
Zain, and Hashim, 2012). In 2015, multiobjective optimization of a parallel ankle rehabilitation robot has been done 
using modified differential evolution algorithm (Wang, Fang, and Guo, 2015). Later workspace optimization for 
parallel has been done for drilling operation using genetic algorithm (Sudheer and Kumar, 2017). In multiobjective 
optimization, parallel manipulator is used to design a prosthetic arm using evolutionary algorithm (GA) (Leal-Naranjo 
et al., 2018). Industrial Advances in Machining Parameters particle swarm Optimization for materials were done using 
Response Surface Methodology (Lmalghan et al., 2018). Further, multiobjective optimization is used for 6-DOF 
Parallel Manipulator for setting total Workspace (Qiang et al., 2019). Recently, parametric performances of parallel 
structures with 3 or higher degrees of freedom are being controlled to get maximum dexterity (Xie et al., 2019). 

Tricept parallel structures are also helpful where extreme attention is required for reactive material handling. It is 
used for sensitive medical equipment like prosthesis and cardio pulmonary resuscitation operation (CPR) (Y. D. Patel 
and George, 2012) and others. Now, this paper will progress with problem formulation and the methodology adopted 
for the work and will conclude with results and discussions.

TRICEPT  3. 

Figure 1. Tricept mechanism. 

This mechanism has 3 DOF, and the combination of joints includes two rotations and one translation (Hosseini, 
2011). The actuated joint is prismatic, and it has SPS configuration, but later, one spherical has been replaced with the 
Universal joint, so it becomes the UPS structure. The center link connects the base to the moving platform. When the 
structure is static, the line passing through the universal joint of the moving platform is parallel with the x and y axis 
of base. When the prismatic joint is activated, other universal and spherical joints are passive with that prismatic joint 
movement (Hosseini et al., 2011) (Hosseini, 2011). Limitations for its geometry are illustrated in Table 1.
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Table 1. Geometric Constraints.

Actuator lengths (mm) Angle (rad) d (mm) b(mm) a(mm)

400-750 -1 to +1 20-200 300-500 200-300

In Table 1, ‘d’ is the length of the joint from point C to point P, and also ‘b’ is the length of the static platform from 
point O to B1 whereas ‘a’ is the length from point P to A1 of the moving platform.

PROBLEM FORMULATION4. 
The limited workspace and dexterity are mainly the issues of the parallel manipulator (Glozman and Shoham, 

2009) (Chen et al., 2014) (Furqan, Suhaib, and Ahmad, 2017) (Yunjiang Lou et al., 2005) As a result, it becomes 
vital to design a set of geometric parameters of the parallel manipulator with ideal workspace and good performance. 
Also, it is known that workspace volume and conditioning index are inversely proportional to each other. So, we 
ought to make sure of the optimal performance parameters, which will give optimal design. PSO is famous for its 
fast tracking of optimum value. Fast tracking will save certain amount of computer processing effort.  It  will  bring 
here  the  optimum  values  of  the  performance  index  using  PSO. The task of controlling performance parameter 
simultaneously at the same time, MOPSO, is an additional ingredient to the work.

RESEARCH METHODOLOGY5. 
The schematic methodology is starting from left top of figure 2, and inverse kinematic solution is obtained by close 

loop method for evaluating geometry (Wang, Li, and Zhao, 2010). It will help in finding the performance parameters, 
namely, workspace volume, conditioning index, and global indexes. Then, single objected particle swarm optimization 
is executed on their performance indexes. For the maximum individual performance parameter of the manipulator, 
corresponding design variables are achieved. Then, apply multiperformance parameter (MOPSO) with weighted and 
epsilon strategies to find the optimum performance points simultaneously. Results will be analyzed and compared, and 
validation was done by Hosseini et al. (2011). Conclusion will be drawn at the end with future suggestions.

Figure 2. Methodology.

Kinematic Solutions5.1 

In order to find the performance parameters like conditioning index and global index, first, find the inverse 
kinematics of the whole structure. Here are some steps to calculate the inverse kinematics:

Formulate position vectors of limbs with respect to frame ‘O’, which is the base frame, i.e., OB1, OB2, and OB3.• 

Formulate position vectors of limbs with respect to ‘P’ frame, which is the moving frame, i.e., PA1, PA2, and PA3.• 

Consider the center link and make the rotation matrices ‘R’ and translational matrices ’a’:• 
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                                                        (1)

                                                   

(2)

where the 1st, 2nd, and 3rd rows of a1 are the position values in x, y and z directions from the 1st leg to the center 
point of the moving platform, while a2 is from the 2nd leg and a3 is from the 3rd leg. 

Then, from the closed loop procedure, the position vector is indicated from base to moving platform.• 

                                                                                                     (3)

where Ai = Transformation from base point ‘O’ to the moving ‘P’, and i ranges from 1 to 3
 = Rotation matrix from point of base to moving platform.

OP = Position vector from base to moving platform.

By putting Eq. (1) (2) in (3), Eq. (4) takes the form

           

(4)

Similarly, Bi = Transformation from base point ‘O’ to the point ‘B’, and i ranges from 1 to 3:

                                                                         

(5)

Then, from the constraint equations, proceed towards the inverse kinematics:

                                                                                            (6)

where i increases from 1 to 3, {q1, q2, q3} denote the actuated lengths of joints configuration, and {φ, θ, c} are 
the Cartesian coordinates, where θ denotes the rotation angle along x axis and Ψ denotes the rotation angle along the 
y axis, whereas c is the translation along z axis. The Jacobian matrix has been formulated. 

             

(7)

                                                                                                      (8) 

After taking differentials, Eq. (7) can be rearranged to form Eq. (8):  
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        (9)

Finally, the Jacobian matrix of order 3x3 is shown as 

J= [P Q R]                                                                                                                        (10)

where P, Q, and R are the 3x1 order matrix as shown in Eq. (9). The conditioning index ‘k’ may then be found 
using Eq. (12).

Performance Analysis5.2 

Performance or dexterity is the standard that deals with manipulator’s capability to obtain the given task (Shao 
et al., 2017). For that matter, optimal design has to be found for better performance of the manipulator. As stated 
previously, performance can be in terms of reachability and mobility. The calculation measure is the performance 
controlling parameters, which will be explained next.

Conditioning index5.2.1 

Dexterity index “K”, also known as the condition number, is the ability of the mechanism to change its poses 
randomly. Its value will range from 1 to infinity, while the conditioning index is the reciprocal of dexterity (Wu, 
2019):

K= ||J||*||J-1||                                                                                                (11)

k=1/K                                                                                                            (12)

where ‘J’ is the Jacobian matrix.

                                                 (a) 2d view                                                         (b) 3d view

Figure 3. Conditioning index versus different orientation theta ‘θ’ and sai ‘Ψ’ at elevation ‘z’ of ‘500’mm.
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Iterations have been taken with a step size of 0.1 between -1 and 1 in MATLAB. It is shown from the graph that the 
peak point of the curve is at 1.9e-3. The step size taken between the set of constraints is 20. The lesser the conditioning 
index, the higher the performance of a manipulator. 

Global Conditioning Index 5.2.2 

Further, check the results globally by using the global indexing performance index ‘GCI’. In other words, the 
global index is the mean of the conditioning index in a prescribed volume around its workspace (Angeles, 1991). The 
higher the global index, the higher the performance in terms of mobility of a manipulator.

Workspace Volume5.2.3 

There are many methods adopted by many researchers for the calculation of workspace volumes. Analytical and 
numerical approaches have been introduced previously in Deb (n.d.), and the same will be practiced here. Firstly, it 
takes the whole of the workspace as a cube, which has three axes x, y and z, respectively; then, it takes the subspace, a 
cylinder in particular for the workspace calculation. It restricts the legs and the platforms of the manipulator around a 
cylinder and from the inverse kinematic solutions of the parallel manipulator. By keeping the constraints in view, this 
searches each q’s in that subspace, which forms the closed cylinder. After each z increasing, this will try to find out the 
solutions that are trapped inside or onto the surface of that subspace. (Deb n.d.). MATLAB code takes the following 
necessary steps for workspace. 

Step 1: For a certain z, find the inverse kinematics solutions for a prescribed set of parameters and their Design 
and Geometric constraints. 

Step 2: Do the necessary procedure to make a sampled hollow cylinder as a subspace.

Step 3: Start a check for the point of solutions to be in that cylinder and discard the remaining set of points as it is 
beyond our boundary conditions.

Step 4: Repeat the procedure from step 1 to step 3 for z=z+1.

Step 5: Get a set for all z and save it in a column matrix form to be used later for analysis. Plot it to get a desired 
dexterous workspace around a subspace.

In case 1, the step size taken between the set of geometric constraints is 20. In this algorithm, it will search out 
the points that lie within the taken cylindrical subspace and discard the remaining set of points. 1123.2 mm3 is the 
dexterous workspace volume when taking only the values of inverse kinematic solutions q’s under the subspace it has 
taken along z ranging from 0 to 1000mm. Step size of angles is 0.1 rad. Step size for geometric constraints is 10mm.

                                      (a) 2d view                                                                      (b) 3d view

Figure 4. View of workspace volume without actuator limits in the subspace for ‘θ’ and ‘Ψ’. 
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It is obvious now that the region will be eliminated in the workspace calculation when keeping the actuator lengths 
ranging from 400 to 750 mm in view and in the subspace. After considering the actuator constraints, the volume is 
found to be 845.2571mm.

                                      (a) 2d view                                                                      (b) 3d view

Figure 5. View of workspace volume with actuator limits of 400 to 750mm in the subspace for ‘θ’ and ‘Ψ’. 

Conventional Single Objective Optimization 5.3 

Optimization process for one parameter irrespective of other performance parameters will be of major concern in 
this section. These evolutionary algorithms perform swiftly for the findings of local and global minimal and maximal 
points. Other traditional methods like bracketing and elimination optimization techniques do not guarantee findings of 
optimum points. They can skip their local and global points. So, in order to have that EA in our parallel manipulator 
calculations, ant colony optimization, genetic algorithms optimization (GA), and particle swarm optimization (PSO) 
have recently paved the way to optimization of design variables.

Particle Swarm Optimization5.4 

PSO usually takes the advantage of lesser iterations and its higher convergence rate in the start than genetic 
algorithm (Rajendra and Pratihar, 2011). PSO has few setting parameters and simple and easy implementation; hence, 
it can be used to solve nonlinear, nondifferentiable, and multipeak optimization problems in the fields of science and 
engineering (Harrison, Engelbrecht, and Ombuki-Berman, 2018) (El-Shorbagy and Hassanien, 2018).

This algorithm follows the social behavior of birds, when the birds move in search for food and all do not know 
the exact location of food. Finally, the food is located by one bird, and it is found to be nearest so now all the birds 
will follow that food, which has been found by one of them (Rini and Shamsuddin, 2011). That bird can be named as 
a leader. PSO is a searching algorithm. PSO starts with the same process of initialization (Kennedy, 1999). Steps for 
the PSO algorithm are given below. All further readings and calculations are run through MATLAB.
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Figure 6. Flow diagram for the Particle Swarm Optimization.

The equation below is an updated velocity function for step 5 in Fig.6.

vnew = vg(j)+c1*r1*(pbest-x(i,j))+c2*r2*(gbest(j)-x(i,j))                         (13)

vnew= New velocity after update 

vg= Global velocity of the particle

pbest= Particle best, same at start as x(i,j).

x(i,j)= the value of particle taken from ith row and jth column from the start to size of the swarm ‘n’

gbest= global best is the global best of the swarm corresponding to the  fitness value of the objective function.

c1, c2 are the first and second constants, and r1, r2 are the first and second random values.

Usually, these constants should both sum up to 4 in simulations, whereas r 1 and r2 both are random values taken 
from 0 to 1. Similarly, the position update of the particle takes place in accordance with the velocity update equation, 
which is represented in this form normally (del Valle et al. 2008).

xnew = x(i,j)+ vnew                                                                                  (14)

where xnew is the new position of the particle. The maximum swarm values will optimize and finally declare 
the final constant value as maxima optimum point. The conditioning index is being optimized for the set of design 
variables a, b, and d, and PSO algorithm is launched. The aim to find a minimum point for this performance index was 
accomplished, and the corresponding design variables were saved against that best minimum point. The execution of 
the MATLAB code reveals the following results. 
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Figure 7. Conditioning index ‘k’ versus the iterations.

Figure 7 represents twenty iterations with a step size of 0.1 rad of angle. These values are taken for the one 
elevation of ‘c’ for 500 mm elongation. For 20 intervals between the design variables, the iteration started until a 
smooth constant line comes, as it is a sign that the algorithm has most probably found its optimum point. Iterations 
are being used here as a stopping criterion. As shown in the graph, the nearby optimum conditioning index ‘k’ point is 
.002642. Table 2 shows the corresponding optimum design variables.

Table 2. gbest parameters versus design variable.

Sol no a(mm) b(mm) d(mm) θ Ψ K k

1423 203.0038 302.9585 102.369 0.2 0 532.0505 0.00188

1424 204.2438 300.8429 93.57697 0.2 0 577.5259 0.001732

1425 204.2327 302.8744 164.8218 0.2 0 378.4926 0.002642

1426 203.2896 303.1866 161.7431 0.2 0 381.9439 0.002618

1427 204.2203 300.8822 25.35778 0.2 0 2409.055 0.000415

Now, check the maximum workspace values. Firstly, run the algorithm, and then check the maximum values of the 
workspace until it computes.

Figure 8. Maximum workspace ‘Vol’ values versus the iterations.
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Twenty iterations for the 20 intervals have been taken between the design variables with a step size of 0.1 rad 
of angle. The curve in figure 8 has made its own threshold at 8 iterations. This is because the curve has reached its 
maximum height in 8 iterations, and PSO fast convergence is claimed and shown to be constant, and this optimum 
point is regarded as global maxima. gbest value for the maximum optimized volume is found to be 950.0733mm3 as 
shown in figure 8, and table 3 shows its corresponding optimum design variables within their geometric constraints.

Table 3. Design variables versus maximum volume for orientation ‘θ’ and ‘Ψ’.

Sol no a(mm) b(mm) d(mm) θ Ψ gbest Vol

252 298.6565 497.9428 163.9254 -0.2 -1 934.6555

253 298.4786 493.1514 195.2298 -0.2 -1 870.2555

254 299.9863 497.5456 154.6851 -0.2 -1 950.07333

255 298.9249 497.5168 162.3638 -0.2 -1 937.0999

256 295.3666 497.4281 170.0234 -0.2 -1 917.0779

In both the cases, for the optimization of workspace volume ’Vol’ and conditioning index ‘k’, previously, the 
optimum performance points were achieved in 45 to 50 iterations by using GA in Hosseini et al. (2011)

Multiobjective Particle Swarm Optimization (MOPSO)5.5 

In rapid manufacturing, it needs an optimum design to get maximum performance by triggering parametric 
values at the same time. In the multiobjective one, it is desirable to produce a function comprised of performance 
parameters to be treated as variables that can address variations of all the parameters at the same time. New function 
will be treated as objective function for the job and the performance parameters act as function variables (Asadollahi-
Yazdi, Gardan, and Lafon, 2018). After that, the process for the optimization remains the same (Guohua et al., 
2013). There are numerous ways of forming that new function. See weighted sum strategy for further calculations 
(Radovanović, 2019). 

Weighted sum method5.5.1 

In this multiobjective technique, the function is formed by assigning the weights. Each variable is assigned weight, 
which can be utilized according to the user demands. And the equation will be created (Goel and Stander, 2007). 
Maximize ‘y’ now, and the fitness value is examined using this function. Normalization is also performed for the 
weights.

y=w1*z (i,1)+w2*z (i,2)+ w3*z (i,3)                                                     (15)

w1, w2, and w3 are the three weights assigned to the conditioning index ‘k’, workspace volume ‘Vol’, and global 
Conditioning index (GCI). This method is good for continuous and convex problems; however, local optima usually 
achieve discontinuous functions as well (Goel and Stander, 2007).

Preference is set in start for the desirable performance parameter. Figure 9 relates the three performance parameters 
evaluated through the weighted sum strategy. 20 iterations with 0.1 step size of angles have been made, and the 
objective function shows a constant behavior. Maximization PSO runs, and it has given preference to the conditioning 
index ‘k’.
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Figure 9. gbest conditioning Index ‘k’ increasing of the weighted objective function.

Table 4. Conditioning index ‘k’ against the set of GCI, workspace volume ‘Vol’, and the design variables for ‘θ’ and 
‘Ψ’  of the multiobjective maximum optimization.

Sol no a(mm) b(mm) d(mm) θ Ψ k Vol GCI

4822 200.0313 305.1959 98.97398 0.1 0 0.001807 28.21148 0.000984

4823 200.0645 304.7332 88.68052 0.1 0 0.001636 27.23871 0.000985

4824 200.0367 305.2536 155.9036 0.1 0 0.002593 32.97995 0.000985

4825 200.0068 305.2877 155.0147 0.1 0 0.002583 32.91182 0.000985

4826 200.0301 305.0755 53.63707 0.1 0 0.000985 23.72593 0.000985

Set 1 for workspace volume, and 0 for the other two parameters. The MATLAB code gives the following result. 

Figure 10. Multiobjective maxima with workspace volume given preference of 1.
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Table 5. Workspace volume against the set of GCI, Conditioning Index ‘k’, and the design variables for ‘θ’ and ‘Ψ’ 
of the multiobjective maximum optimization.

Sol no a(mm) b(mm) d(mm) θ Ψ k Vol GCI

2529 286.0273 471.2437 173.9444 -0.4 -1 0.000735 888.6863 0.00106

2530 298.1691 495.2726 195.2288 -0.4 -1 0.000757 873.7818 0.00106

2531 296.1315 489.4961 189.9752 -0.4 -1 0.000751 935.0132 0.0001059

2532 299.8161 497.553 198.7088 -0.4 -1 0.000759 927.8974 0.0001059

2533 296.6987 490.0646 191.722 -0.4 -1 0.000752 933.3976 0.0001059

The result concludes the relationship that workspace volume ‘Vol’ is inversely proportional to the conditioning 
index ’k’, and conditioning index is directly proportional to global index ‘GCI’. Hence, results have been compared 
with those of single objective optimization and were validated.

Epsilon Constraint Method5.5.2 

This method uses one single function and restricts other functions through some constraints. Hence, it gives overall 
optimum desired results under that set of constraints. The user has to play through these set of constraints very 
carefully and needs expertise about the boundaries of the solution (Goel and Stander, 2007). Maximize y with respect 
to the other constraints, i.e., Function ‘Y’ is 

Y=Fi (X)  where    i=1, 2,……,I                                                                   (16)

subject to constraint ‘C’ and ‘L’

Cj(X)            j=1, 2,……,J  

Lk(X)         where  k=1, 2,……,K                                                     (17)

Workspace volume is being treated as a constraint, and the conditioning index ‘k’ is shown to be maximized under 
the 700 mm3 volume restriction. Maximum ‘k’ at this point is .002593, which will be regarded as local maxima. This 
result is also shown from 100 iterations. It has got its optimum in 20 iterations.

Table 6. Compensated workspace volume ’Vol’, conditioning Index ‘k’ combined against the set of GCI, and the 
design variables for ‘θ’ and ‘Ψ’  of the multiobjective maximum constraint optimization.

Sol no a(mm) b(mm) d(mm) θ Ψ Vol k GCI

2529 200.1062 306.0383 88.68052 0.1 0 27.28973 0.001635 0.001012

2530 200.1541 306.1213 156.2243 0.1 0 33.06519 0.002593 0.001012

2531 200.141 306.069 156.2009 0.1 0 33.05932 0.002593 0.001012

2532 200.1247 306.0919 53.63707 0.1 0 23.75598 0.000985 0.001012

2533 200.1803 306.0872 108.1576 0.1 0 29.08988 0.00195 0.001012
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Figure 11. gbest compensation value increasing graph of Conditioning Index ‘k’ of the constraint 
volume up to 700mm3.

DISCUSSION6. 
In our proposed methodology, multiobjective optimization of tricept manipulator is an addition to the previous 

research work. This work has given validation to the results shown in Hosseini et al. (2011) for single objective 
optimization for volume and conditioning indexes optimization, respectively, and it has been evaluated with lesser 
iterations, which ensures fast result with less processing effort. The corresponding design variables achieved are 
considered to be the best optimum values with correspondence to the best performance indexes. 

MATLAB algorithm states that, after initialization of the random variables, it will calculate the performance 
parameters. Single objective is performed to get the results, in which performance parameters will be treated 
independently. If it achieves the constant line, it has found the optimum solutions, and the algorithm stops with the 
corresponding optimum design variables. The same process is repeated for the multiobjective technique, and the 
performance parameters will be served simultaneously. If it achieves the constant line, it has found the optimum 
solutions, and the algorithm stops with the corresponding optimum design variables. If not found, the process will be 
repeated iteratively for both cases until optimum solutions are achieved.    

Figure 12. MATLAB algorithm.
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CONCLUSION7. 
This work concludes that PSO usually takes lesser iterations than previously used genetic algorithm (GA) in 

Hosseini et al. (2011) and is declared as faster than GA for this case. GA exerted more computation on the processor 
than PSO. PSO has a higher convergence rate than GA for this task. But sometimes PSO can treat the local maxima 
or minima as global ones so more efforts are needed to be exerted to declare the point as nearby global optimum (del 
Valle et al., 2008) (Qiu et al., 2018). It is random. It can try different iterations at start to see the variance of optimum 
points. The optimum points achieved are being claimed for maximum performance that can be extracted from this 
tricept manipulator with less computational effort; hence, optimum and maximum dexterity have been achieved. 

Further, it can go for more performance parameters like stiffness index. More constraints can be added. Shape 
singularity analysis can be done completely for future works. The purpose to get the optimized design variables with 
less computation has been achieved for this tricept mechanism.
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