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ABSTRACT 

This paper presents the problem of fault diagnosis in a three-tank hydraulic system. A mathematical model of 
the system is developed in order to apply two different observing algorithms. Unknown Input Observer (UIO) and 
Extended Kalman Filter (EKF) have been used to detect and isolate actuator and sensor faults. For Unknown Input 
Observer (UIO), residuals are calculated from the measured and estimated output according to the eigenvalues of the 
system after processed by Linear Matrix Inequality (LMI). Extended Kalman filter uses process and measurement 
noise variances for state estimation. Unknown Input Observer and Extended Kalman Filter's performance in fault 
estimation and isolation is evaluated under different scenarios. Using Extended Kalman Filter (EKF), faults can be 
diagnosed effectively in the presence of noise, while Unknown Input Observer (UIO) is working better in the absence 
of noise, and simulation results illustrate that clearly. 

 
Keywords: Extended kalman filter; Fault detection; Fault isolation; Hydraulic system; Unknown input 

observer. 
 

INTRODUCTION 

The system is a combination of components that work together harmonically to accomplish a particular purpose. 
Error is a system event that obstructs the system from achieving its nominal condition. Fault origins as a result of the 
error. Fault existence interrupts the system parameters and causes its aberration, such as an obstructing actuator or 
sensor detriment. So, fault can be classified as plant, sensor, and actuator fault. The error can affect the interaction 
between the plant's components and change the communication between the system and controller. These errors alter 
the performance of the system by degrading the dynamical input/output (I/O) characteristics of the plant from the 
desired ones and hence cause system failure (Kiss et al., 2014). An error can be multiplicative or/and additive error 
during the system operation due to system improper functioning or instrument aging. 

 
The literature review includes many types of research on different tank models, observer's design, and Kalman 

prototype, which have been used extensively in FDI. 
 
A model of a standard three-tanks system in Chalupa et al. (2012) and Farias et al. (2018) has been tested under 

a design of state observer layout for states of a single or paired measurements. The presented method is robust and 
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uncomplicated to prove the particularity of observers (M. Hou, 2002). The same model was used to examine nonlinear 
and linear multivariable feedback control to design the Fault Detection and Isolation (FDI) and Fault Tolerance 
Control (FTC) system (Hassan Noura, Didier Theilliol, 2009).  

 
A decoupled linear observer has been designed to diagnose sensor, component, and actuator faults (valve, pipe, 

and pump) around an equilibrium point without giving any information about the fault magnitude (D. Koenig, 1997). 
Based on the nonlinear model of degree N, an observer has been designed and applied to an experimental hydraulic 
system to detect the fault in the case of bilinear and polynomial nonlinearities by Shields & Du (2000). In L. El Bahir 
& M. Kinnaert (1998), time-varying innovation generators integrated with generalized likelihood ratio tests have 
been developed based on a bilinear model for fault diagnosis purposes. In Rincon-Pasaye et al. (2008), a comparison 
has been held between two observer types to test their reliability in fault detection using a small number of 
measurements from the plant. The proposed methods have been evaluated at an actual time on a model of three tanks. 
Residuals have been calculated successfully using nonlinear filters by Join et al. (2005). Multiple observers have been 
synthesized in Abdelkader. et al. (2003) to calculate the state variables of a nonlinear system which consists of a 
multiple sub-model with some unknown inputs. The calculation of the system's overall gain has been simplified to 
be the solution to the local observer's gain matrix. Faults in a multi-models system have been detected and isolated 
using an adaptive filter, which builds up from a group of decoupled observers (Rodrigues et al., 2008). In Koscielny 
(1999), a Fault diagnosis process has been accomplished using fuzzy logic relying on its ability to analyze multi-
value residuals. 

 
Wang et al. (1975) is the first researcher who has used the UIO in a system with specific unknown inputs (Hassan 

Noura, Didier Theilliol, 2009). The UIO has been used widely in faults detection and isolation for industrial processes 
and installations (Anzurez-Marin et al., 2008). UIO has been used for fault determination in a simple hydraulic plant 
of two tanks, and a more complicated system has been used for a system with five tanks (Tahraoui et al., 2015). while 
in Gaeid & Ping (2010), it has been used to detect the fault which occurs in an induction motor.  

 
The Extended Kalman Filter (EKF) and its various enhancement have been applied in control engineering. 

Therefore the process of sensor fault detection has been realized using EKF by Van Eykeren et al. (2012) also actuator 
fault detected by Miron et al. (2017) and Skach & Puncochar (2017). 

 
A new method combining an adaptive neuro-fuzzy inference system (ANFIS) and Gustafson–Kessel (GK) 

clustering algorithm has been used for fault identification, proper classification, and location. The GK fuzzy 
clustering algorithm decides the precise configuration and its parameter using the orthogonal least square (Abdullah 
& Hidaka, 2018).  

 
In this paper, we used UIO and EKF to detect the faults in the presence and absence of disturbance for a three-

tank hydraulic system. Then, their fault detection and isolation efficiency have been tested and compared. 
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HYDRAULIC MODEL OF A THREE TANKS SYSTEM 

The three-tank system shown in Fig.1 considered as our application of the FDI process. 
 

 

 

 

 

 

 

 

 
 

Figure 1. Hydraulic model of three tanks system. 
 

The system in Fig. 1 is built up from two upper cylindrical tanks with the same cross-section area (S1, S2) and 
third lower tank, with a diverse cross-section area S3. Pipes with resistances (Rp1, Rp2, and Rp3) are used to connect 
the tanks. Pump1 supplies tank1 with input U1 and pump2 supplies tank2 with input U2, while the outputs of the upper 
tanks Qo1 and Qo2 form an input to the third tank. The outcome of the system is Qo3. The resistance of the pipe can be 
calculated using the liquid level and tanks output, as follows: 

 
𝑅𝑅"# =
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         (1) 
while the rate of the volume change in a tank is  
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By ignoring the pipeline loss, the system will be modeled using the following equations: 
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The model represented by equations (7 and 8) is a nonlinear model;  after discretization by Euler method with 
sampling time t =0.1S,	  and	  linearized with 𝑥𝑥`:, 𝑥𝑥`?, and 𝑥𝑥`A as an equilibrium point given (Witczak et al., 2016a) :  

 
𝑥𝑥: = 𝑙𝑙:   ,	  𝑥𝑥? = 𝑙𝑙?,  𝑥𝑥A = 𝑙𝑙A 

𝐴𝐴` =

F(T*;)@	  (U)
I;Hb;

0 0

0 F(T*@)@	  (U)
I@Hb@

0
(T*;)@	  (U)
IBHb;

(T*;)@	  (U)
IBHb@

F(T*;)@	  (U)
IB(Hb;GHb@)

𝐵𝐵` =

:
I;

0

0 :
I;

0 0

	   , 𝐶𝐶` =
1 0 0
0 1 0
0 0 1

	  𝑎𝑎𝑎𝑎𝑎𝑎	  𝐷𝐷` = 0

        (9) 

 

THEORY 

Unknown Input Observer (UIO) 

Signal residual is the difference between the actual output and estimated output. By observing it, the process of 
fault detection can be achieved according to the following equation: 

 
𝑟𝑟 𝑘𝑘 = 𝑦𝑦 𝑘𝑘 − 𝐶𝐶𝑥𝑥(𝑘𝑘)       (10) 
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Equation (14) describes a nonlinear system with unknown components, which can be assumed as an additive 
term. This system model is used for observer design. 

 
𝑥𝑥 𝑘𝑘 + 1 = 𝐴𝐴𝑥𝑥 𝑘𝑘 + 𝐵𝐵𝐵𝐵 𝑘𝑘 + Fk𝑓𝑓 𝑘𝑘 + 𝐸𝐸𝐸𝐸 𝑘𝑘 + V(x 𝑘𝑘 , u 𝑘𝑘 )

𝑦𝑦 𝑡𝑡 = 𝐶𝐶𝑥𝑥 𝑘𝑘 + Fq𝑓𝑓 𝑘𝑘   (11) 

where x ∈ ℜm is the state vector, u ∈ ℜn is the control input vector, y ∈ ℜn is the output vector , and d(t) ∈ ℜq is the 
vector of unknown input. A, B, C, and E are matrices of proper sizes. 

 
The UIO design is created based on the system equation (14). Without considering the system disturbance and 

unknown inputs, the estimation error vector e(t) tends to zero. Full order observer characterized as follows: 
 

ξ 𝑘𝑘 + 1 = 𝐹𝐹ξ 𝑘𝑘 + 𝑇𝑇𝐵𝐵𝐵𝐵 𝑘𝑘 + 𝐾𝐾𝑦𝑦 𝑘𝑘 + 𝑇𝑇𝑇𝑇(𝑥𝑥w, 𝐵𝐵w)
𝑥𝑥 𝑘𝑘 = ξ 𝑘𝑘 + 𝐻𝐻𝑦𝑦(𝑘𝑘)

   (12) 

where  𝑥𝑥 𝑘𝑘 ∈ ℜm is the estimated state vector,  ξ(k) ∈ ℜn is the state vector of full order observer. The values of 
matrix H, K, T, and F are calculated using Linear Matrix Inequality (LMI) to satisfy the uncoupling of unknown input 
and consider the design requirement. (Anzurez-Marin et al., 2008; Witczak et al., 2016b). e(t) tends to have zero 
value if the matrix F is Hurwitz 𝑥𝑥 𝑘𝑘 	  → 𝑥𝑥(𝑘𝑘), and the following constraints are satisfied: 

 

𝐼𝐼 + 𝐻𝐻𝐶𝐶 𝐸𝐸 = 0
𝑇𝑇 = 𝐼𝐼 + 𝐻𝐻𝐶𝐶

𝐹𝐹 = 𝐴𝐴 − 𝐻𝐻𝐶𝐶𝐴𝐴 − 𝐾𝐾:𝐶𝐶
𝐾𝐾? = 𝐹𝐹𝐻𝐻

       (13) 

where K=K1 + K2 
The observer (15) must fulfill the following necessary and sufficient constraints to be UIO for the system in 

equation (14): 
 

§   (g(a,u)-‐‑g(b,u))T	  (a-‐‑b)	  ≤	  (a-‐‑b)T	  M(a-‐‑b),	  	   ∀	  a,b	  ∈	  𝕏𝕏,	  u	  ∈	  𝕌𝕌	  

§   (g(a,u)-‐‑g(b,u))T	  (g(a,u)-‐‑g(b,u))	  ≤	  (a-‐‑b)T	  MT	  M(a-‐‑b),  ∀	  a,b	  ∈	  𝕏𝕏,	  u	  ∈	  𝕌𝕌 

§   Rank (CE) = rank (E). 

§   The detectability of pair (C,	  A1). 

Where 
 

𝐴𝐴: = 𝐴𝐴 − 𝐸𝐸 𝐶𝐶𝐸𝐸 á	  𝐶𝐶𝐸𝐸 F: 𝐶𝐶𝐸𝐸 á	  𝐶𝐶𝐴𝐴 = 𝑇𝑇𝐴𝐴	  
𝐻𝐻 = 𝐸𝐸 𝐶𝐶𝐸𝐸 á	  𝐶𝐶𝐸𝐸 F: 𝐶𝐶𝐸𝐸 á     (14) 

Here we observe that the number of independent measurements must be less than the maximum number of 
uncoupled disturbances. After satisfied the detectability condition of the pair (C, A1), then the proper value of K1 
should be selected to guarantee the stability of 𝐹𝐹 = 𝐴𝐴: − 𝐾𝐾:𝐶𝐶, which is an essential step. 
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Extended Kalman Filter (EKF) 

Kalman Filter is an ideal estimator designed to deal with model-based linear systems. The Extended Kalman 
Filter algorithm is an advanced version of the ordinary Kalman filter that works with nonlinear model-based systems. 
The following equations represent a general form of Extended Kalman Filter for a nonlinear discrete-time system.   
State-space equation:  

𝑥𝑥 𝑘𝑘 + 1 = 𝑓𝑓 𝑥𝑥 𝑘𝑘 , 𝑢𝑢 𝑘𝑘 + 𝐺𝐺𝐺𝐺(𝑘𝑘)    (15) 

Measurement equation:  
 

𝑦𝑦 𝑘𝑘 = 𝑔𝑔 𝑥𝑥 𝑘𝑘 , 𝑢𝑢 𝑘𝑘 + 𝐻𝐻𝐺𝐺 𝑘𝑘 + 𝑣𝑣(𝑘𝑘)    (16) 

While x is the state vector of n state variables, u is the input vector of m input variables. F is the system vector 
function, and w is a random (white) disturbance (or process noise) vector with auto-covariance Q. G is the process 
noise gain matrix relating the process noise to the state variables.   

 
Y is the measurement vector of r measurement variables, g is the measurement vector function. H is a gain matrix 

relating the disturbances directly to the measurements, and v is a random (white) measurement noise vector with 
auto-covariance R.  
State estimation process using Kalman Filter can be summarized as follows: 

§   Set the initial value of the predicted state. 

𝑥𝑥"(0) = 𝑥𝑥#S#-       (17) 

§   Using the predicted state estimate, calculate the expected measurement estimate. 

𝑦𝑦"(𝑘𝑘) = 𝑔𝑔 𝑥𝑥"(𝑘𝑘)       (18) 

§   The measurement estimate error is calculated by subtracting the  measurement 𝑦𝑦(𝑘𝑘) from the predicted 

measurement 𝑦𝑦"(𝑘𝑘).  

𝑒𝑒 𝑘𝑘 = 𝑦𝑦(𝑘𝑘) − 𝑦𝑦"(𝑘𝑘)        (19) 

§   Find the corrected state estimate 𝑥𝑥å(𝑘𝑘) by adding the corrective term 𝐾𝐾𝑒𝑒(𝑘𝑘) to the predicted state 

estimate 𝑥𝑥"(𝑘𝑘). 

𝑥𝑥å 𝑘𝑘 = 𝑥𝑥" 𝑘𝑘 + 𝐾𝐾𝑒𝑒(𝑘𝑘)      (20) 

§    Find the predicted state estimate for the next time step., 𝑥𝑥"(𝑘𝑘 + 1) , using the present state estimate 

𝑥𝑥å 𝑘𝑘  and the known input 𝑢𝑢 𝑘𝑘  in process model:  

𝑥𝑥" 𝑘𝑘 + 1 = 𝑓𝑓 𝑥𝑥å 𝑘𝑘 , 𝑢𝑢 𝑘𝑘      (21) 
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METHODOLOGY 

Fault Detection in Three-Tank Model Using UIO 

The following parameters have been applied to the model: 
 

𝑆𝑆: = 0.0154𝑚𝑚?, 𝑆𝑆? = 𝑆𝑆:	  𝑎𝑎𝑎𝑎𝑎𝑎	  	  𝑆𝑆A = 3×𝑆𝑆: 

𝑆𝑆S = 6×10Fí𝑚𝑚?	  , 𝑔𝑔 = 9.81
𝑚𝑚
𝑠𝑠?

, 𝜇𝜇 = 0.6,	  	   

𝑈𝑈`: = 3×10Fí 𝑚𝑚
A
𝑠𝑠 , 𝑈𝑈`? = 5×10Fí𝑚𝑚A/𝑠𝑠	   

Sn: the pipe section area, g: Acceleration of gravity, and µi: flow coefficient of the tank i. 
These parameter values were taken from several previous studies (Tahraoui et al., 2015) (Hassan Noura, Didier 

Theilliol, 2009), and after applying transformation matrix and LMI solver, the following matrix has been achieved 
(Buciakowski et al., 2017; Zhang et al., 2016): 

 
𝑥𝑥:
𝑥𝑥?
𝑥𝑥A

=
−5.504 0 0

0 −4.128 0
−1.835 1.376 −0.786

𝑥𝑥:
𝑥𝑥?
𝑥𝑥A

+
64.935 0

0 64.935
0 0

𝑈𝑈:
𝑈𝑈?

+
1
1
0

𝑓𝑓T 𝑡𝑡 +
1
1
0

𝑎𝑎 𝑡𝑡 +

1
1
0

𝑉𝑉(𝑥𝑥 𝑘𝑘 , 𝑢𝑢(𝑘𝑘))          

  (22) 

 

𝑦𝑦 = 	  
1 0 0
0 1 0
0 0 1

𝑥𝑥:
𝑥𝑥?
𝑥𝑥A

+
0
0
1

𝑓𝑓ò(𝑡𝑡) +
0
0
1

𝑎𝑎(𝑡𝑡)      (23) 

Observer matrix has been obtained from LMI solver: 

𝐹𝐹 =
−0.79 0 0
0 −3.25 0
0 0 −0.50

,	  	  	  𝐻𝐻 =
0 0

0.50 0
0 1

𝑘𝑘 =
1.83 0
−0.50 0
0 −0.50

	  𝑎𝑎𝑎𝑎𝑎𝑎	  𝑇𝑇 =
1 0 0
0 0.5 0
0 0 0

	  	  

     (24) 

 

Fault Detection in Three-Tank Model Using EKF 

By assuming that the change in outflow rate is approximately zero,   
 

𝑥𝑥: = 𝑄𝑄>:   ,	  𝑥𝑥? = 𝑄𝑄>?, and  𝑥𝑥A = 𝑄𝑄>A 

	  
	  

Extended Kalman Filter (EKF) 

Kalman Filter is an ideal estimator designed to deal with model-based linear systems. The Extended Kalman 
Filter algorithm is an advanced version of the ordinary Kalman filter that works with nonlinear model-based systems. 
The following equations represent a general form of Extended Kalman Filter for a nonlinear discrete-time system.   
State-space equation:  

𝑥𝑥 𝑘𝑘 + 1 = 𝑓𝑓 𝑥𝑥 𝑘𝑘 , 𝑢𝑢 𝑘𝑘 + 𝐺𝐺𝐺𝐺(𝑘𝑘)    (15) 

Measurement equation:  
 

𝑦𝑦 𝑘𝑘 = 𝑔𝑔 𝑥𝑥 𝑘𝑘 , 𝑢𝑢 𝑘𝑘 + 𝐻𝐻𝐺𝐺 𝑘𝑘 + 𝑣𝑣(𝑘𝑘)    (16) 

While x is the state vector of n state variables, u is the input vector of m input variables. F is the system vector 
function, and w is a random (white) disturbance (or process noise) vector with auto-covariance Q. G is the process 
noise gain matrix relating the process noise to the state variables.   

 
Y is the measurement vector of r measurement variables, g is the measurement vector function. H is a gain matrix 

relating the disturbances directly to the measurements, and v is a random (white) measurement noise vector with 
auto-covariance R.  
State estimation process using Kalman Filter can be summarized as follows: 

§   Set the initial value of the predicted state. 

𝑥𝑥"(0) = 𝑥𝑥#S#-       (17) 

§   Using the predicted state estimate, calculate the expected measurement estimate. 

𝑦𝑦"(𝑘𝑘) = 𝑔𝑔 𝑥𝑥"(𝑘𝑘)       (18) 

§   The measurement estimate error is calculated by subtracting the  measurement 𝑦𝑦(𝑘𝑘) from the predicted 

measurement 𝑦𝑦"(𝑘𝑘).  

𝑒𝑒 𝑘𝑘 = 𝑦𝑦(𝑘𝑘) − 𝑦𝑦"(𝑘𝑘)        (19) 

§   Find the corrected state estimate 𝑥𝑥å(𝑘𝑘) by adding the corrective term 𝐾𝐾𝑒𝑒(𝑘𝑘) to the predicted state 

estimate 𝑥𝑥"(𝑘𝑘). 

𝑥𝑥å 𝑘𝑘 = 𝑥𝑥" 𝑘𝑘 + 𝐾𝐾𝑒𝑒(𝑘𝑘)      (20) 

§    Find the predicted state estimate for the next time step., 𝑥𝑥"(𝑘𝑘 + 1) , using the present state estimate 

𝑥𝑥å 𝑘𝑘  and the known input 𝑢𝑢 𝑘𝑘  in process model:  

𝑥𝑥" 𝑘𝑘 + 1 = 𝑓𝑓 𝑥𝑥å 𝑘𝑘 , 𝑢𝑢 𝑘𝑘      (21) 
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𝑥𝑥:
𝑥𝑥?
𝑥𝑥A

=

F:
I;JK;

0 0

0 F:
I@JK@

0
:

IBJKB

:
IBJKB

F:
IBJKB

𝑥𝑥:
𝑥𝑥?
𝑥𝑥A

       (25) 

 
The state jacobian:  
 

𝐽𝐽ò =

Fáö
I;JK;

0 0

0 Fáö
I@JK@

0
áö

IBJKB

áö
IBJKB

Fáö
IBJKB

       (26) 

The measurement jacobian:  

𝐽𝐽õ =
1 0 0
0 1 0
0 0 1

        (27) 

The process noise covariance:  

𝑁𝑁) =
0.01 0 0
0 0.01 0
0 0 0.01

      (28) 

The measurement noise covariance:  

𝑁𝑁õ =
10Fù 0 0
0 10Fù 0
0 0 10Fù

      (29) 

RESULTS 

The results achieved below using MATLAB R2020b installed on Casper Excalibur with processor Intel ® core 
™ i7-10750H CPU @ 2.60 GHz and 32 GB RAM. 

 
Results of Fault Detection using Unknown Input Observer (UIO) 

The error which occurs in the system as a result of the unknown input can be presented in  simulation in several 
scenarios; actuator fault (first input ) applied when 4 ≤ t ≤ 9s, second actuator fault (second input ) applied when 13≤ 
t ≤ 17s, and output sensor fault when 26 ≤ t ≤ 34s. The proposed system has two measured inputs (pump1 and pump2) 
and one measured output (sensor). Fig.2 shows the observers' response in the absence of fault and noise for UIO.  
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Figure 3. System with fault (a) Faulty UIO without noise  (b) Faulty UIO with noise.   

 
 

 

 

 

 

 

 

(a)                   (b) 

Figure 2. System without Fault (a) UIO without noise (b) UIO with noise. 
 

 

 

 

 

 

 

(a)              (b) 

 

From Fig. 3, faults appear in the two inputs and sensor output in the absence of noise for UIO, while the noise 
exists in the case of EKF. 
 

Results of Fault Detection using Extended Kalman Filter (EKF) 

To evaluate the ability of the EKF to estimate actuator and sensor fault two scenarios have been implemented: 
the presence of noise with and without fault. Because without the process noise, the EKF model convergence becomes 
a difficult issue.  
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™ i7-10750H CPU @ 2.60 GHz and 32 GB RAM. 
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scenarios; actuator fault (first input ) applied when 4 ≤ t ≤ 9s, second actuator fault (second input ) applied when 13≤ 
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Figure 4. Extended Kalman Filter response without fault. 

Figure 5. Extenend Kalman filter response with fault.  

 

 

 

 

 

 

  

Fig.10 shows the response of the EKF in the case of the nonexistence of fault. 
 

 

 

 

 

 

Fig. 5 shows the response of EKF in case of a complete model fault.  
 

Table 1. Statistical analysis of Unknown Input Observer. 
 

Unknown Input Observer 

case 
Without Noise With Noise 

without fault With Fault without fault With Fault 

RMSEX1 0.0017 1.74 0.71 1.89 

RMSEX2 0.0026 1.40 0.64 1.56 

RMSEY 0.0001 1.88 0.57 1.95 
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Table 2. Statistical analysis of Extended Kalman Filter. 
 

case 
With Noise 

without fault With Fault 

RMSEX1 0.40 0.88 

RMSEX2 0.41 0.88 

RMSEY 0.75 1.44 

 

Table 1 and Table 2 show the two observers' statistical analysis, which indicates the Extended Kalman filter's 
efficiency in cases of noise. In contrast, Unknown Input Observer is strongly recommended for the absence of noise. 

 

CONCLUSIONS 

In this paper, Unknown Input Observer (UIO) and Extended Kalman Filter (EKF) were applied to a fault 
diagnosis problem. A nonlinear model of three-tank hydraulic system is used as an application; the fault diagnosis 
algorithms were tested and simulated in Matlab. According to the simulation results, the observer may look to be less 
complicated than the Extended Kalman Filter. On the other hand, the Extended Kalman filter can solve the potential 
danger, which appears when using the UIO. 

 
The state estimation process using UIO might be too noisy due to the unavoidable measurement noise, because, 

in the sense of the least mean square, it does not compute any optimal state, which is the main problem. Fast dynamics 
systems require a large gain estimator (K), which causes noise measured in the output that significantly affects the 
state estimates.  

 
The state estimation process using Extended Kalman Filter is better, because it uses the process and 

measurement noise variances, which is more accessible than using eigenvalues of the error-model. 
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