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ABSTRACT
The contribution of the shear strains to the overall deformations of reinforced concrete (RC) elements is typically 

neglected.  However, when RC cracks in shear, its shear modulus is significantly reduced, and the contribution of 
the shear strains to the overall deformations of the elements is increased. Experimental testing has shown that shear 
deformations can be significant. Under service conditions, RC can be cracked in shear and hence, a simple method for 
the calculation of the effective cracked shear modulus is desired. Research has shown that the part of the shear response 
after cracking and before yielding can be well modeled using a straight line. This paper uses existing experimental 
data and the equations of the modified compression field theory (MCFT) to examine this part of the response in 
RC membrane elements and to develop two simple equations that can be used to characterize the straight line. The 
proposed equations are evaluated by comparing their results with existing experimental data on the shear response of 
thin RC membrane elements. The comparison includes the post-cracking response and the shear strains at estimated 
service level loading. A very good agreement is obtained between the experimental and the calculated results. The 
simplicity of the proposed equations is illustrated using a numerical example.
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INTRODUCTION
The deformations in structural RC elements at service load conditions are typically required not to exceed prescribed 

limits.  Deformations in RC elements such as beams for example have long been considered to be predominantly due 
to flexure.  While the flexural strength is calculated with reasonable accuracy, the instantaneous and long-term flexural 
deformations are not (Nilson et al., 2010). With the difficulty in obtaining an accurate calculation of the flexural 
contribution to the overall deformations, it was practical to neglect the relatively less influential contribution of the 
shear forces.

However, experiments have shown that the contribution of shear strains to the overall deflections can be considerable 
not only in shear-critical but also in flexure-critical elements (Huang et al., 2019a; Beyer et al., 2011; Debernardi et 
al., 2006; Hansapinyo et al., 2003; Vecchio and Emara, 1992). The cracking of concrete in elements subjected to 
service level shear stresses causes a significant degradation in the shear modulus. This leads to deformations, which 
are considerably larger than those calculated based on the assumption that concrete behaves in linear-elastic manner 
(Huang et al., 2019b; Rahal, 2010). In addition, advances in the modeling of the behavior of RC allowed for a 
more accurate calculation of the flexural contribution to the deformations. Thus, an accurate calculation of the shear 
contribution to the deformations at service conditions is valuable. This can be achieved by the calculation of the shear 
strains and the effective shear modulus at service load conditions, with due consideration of the effects of concrete 
cracking on the degradation of the shear modulus.
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Advanced behavioral models are available to calculate the shear strains in RC elements and to capture the effects 
of concrete cracking, concrete tension stiffening, and steel yielding on the deformations.  The MCFT (Vecchio and 
Collins, 1986; Bentz, 2000) and the fixed angle softened truss model (FASTM) (Pang and Hsu, 1996) are two well-
known examples. These models use the conditions of equilibrium of stresses, compatibility of strains, and realistic 
constitutive model of cracked concrete to calculate the stresses and strains in the concrete and steel. Tension stiffening 
and compression softening are two of the main features, which allow the methods to provide accurate modeling of 
the shear behavior. To account for these and for numerous other factors, the equations of these advanced models are 
complex. Calculating the response requires iterations and is practical only with the use of computers, which limits 
their use. A simpler method is valuable for more common uses.

Research has shown that a significant part of the post-cracking response of RC elements can be modeled using a 
straight line (Rahal, 2010). This part of the post-cracking behavior extends up to the occurrence of steel yielding or 
concrete crushing, whichever takes place first. RC elements subjected to service level stresses typically fall within this 
part of the response. It is of interest to find a simple equation for this line.  This will enable an accurate calculation of 
the shear strains at service conditions.

This paper evaluates the existing shear tests of RC membrane elements and the equations and results of the MCFT 
to characterize the post-cracking behavior. Two simple noniterative empirical equations that can be used to model the 
linear part of the post-cracking shear stress-strain response are proposed. These equations can be used to calculate the 
shear strain and consequently to calculate an effective cracked shear modulus at service Gserv.

POST-CRACKING SHEAR BEHAVIOR OF RC ELEMENTS
Figure 1 shows a thin element subjected to in-plane shear stresses (v). This element is reinforced with orthogonal 

steel in the x- and y-directions. The ratios of reinforcement in these two directions are ρx and ρy and the yield strengths 
are y xf −  and y yf −  respectively. The concrete compressive strength is '

cf .  

Figure 1. Orthogonally reinforced concrete membrane element subjected to in-plane shear stresses.

Figure 2 shows a shear stress-strain relationship curve for an under-reinforced (UR) normal strength concrete 
(NSC) element tested by Pang and Hsu (1995). Before reaching the cracking stress (vcr), the behavior is linear and 
relatively stiff. The uncracked shear modulus in this region is named Guncr. When the concrete cracks, its ability to 
resist the applied stresses decreases. The mechanism of resistance changes to allow the steel to be more actively 
engaged in the resistance. To accommodate this change, the deformations are increased without a significant change 
in the resisted stress. A nearly horizontal transition zone is observed in the response curve, indicating the shift in the 
response from that of an uncracked to that of a cracked composite material.
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Figure 2. Shear response of membrane specimen A3 tested by Pang and Hsu (1995).

The behavior after cracking is significantly softer than that before cracking. The tangent shear modulus after 
cracking (Gcr ) is a fraction of that before cracking (Guncr) (Rahal, 2010). Another severe degradation in the modulus 
takes place when the steel reinforcement yields. The element shown in Figure 2 was reinforced with similar orthogonal 
reinforcement (ρx = ρy =1.79%). The response between the ends of the transition zone and before yielding of the 
reinforcement is nearly linear. At higher stresses, the reinforcement in the two directions yields, and the response curve 
becomes nearly horizontal. The post-yield part of the response is not shown for clarity. In UR elements with unequal 
orthogonal reinforcement (ρx ≠ ρy), the transition between the post-cracking zone and the post-yielding zone shows a 
more gradual softening in the response curve.  

Figure 3. Response of specimens VA1 to VA4 tested by Hsu and Zhang (1998).
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Figure 3 shows the response curves of four membrane specimens tested in pure shear by Hsu and Zhang (1998).  
The reinforcement ratios (ρx= ρy) ranged from 1.2% to 5.24%. Specimens VA1 to VA3 failed in an under-reinforced 
mode, while VA4 failed in an over-reinforced (OR) mode. The increase in the reinforcement ratios increased the 
strength and reduced the ductility. However, in all four specimens, the major part of the post-cracking behavior can 
be represented by a straight line.

The stress at service conditions vserv can be estimated to be 70% of the ultimate shear strength vu (Al-Shaleh and 
Rahal 2007). The stress vserv is typically larger than the cracking shear stress (vcr) and smaller than the shear stresses, 
which cause a major degradation in the shear modulus (steel yielding, or concrete severe softening or concrete 
crushing). Hence, the service stress typically falls within the nearly linear part of the response curve shown in Figures 
2 and 3, irrespective of the mode of failure (MOF) of the element. Figure 2 shows that the shear strains at service 
are severely underestimated if they are calculated based on the uncracked shear modulus Guncr. For specimen A3 for 
example, the measured shear strain at vserv is 3.37×10–3 while the calculated strain based on linear-elastic uncracked 
behavior is about 0.47×10–3.

The post-cracking response extending from the end of the transition zone to the onset of softening caused by steel 
yielding or concrete softening/crushing can be idealized as a straight line. The line is characterized using two values:  
the slope Gcr and the intercept stress v0 with the vertical axis. These two characteristics of the post-cracking response 
are shown in Figure 2 for specimen A3. When these two values are available, it would be possible to easily calculate 
the shear strains at service (γs) and the corresponding effective shear modulus Gserv.

Data from tests on RC elements are available in the literature. Results such as those shown in Figure 3 show that 
an increase in the reinforcement ratios increases the slope Gcr but has limited effect on the intercept point v0.  However, 
the number of the tests, especially the fully documented ones, is limited. In addition, the intercept stress v0 is sensitive 
to the selection of the best-fit straight line, leading to a significant scatter in the results and a difficulty in identifying 
experimental trends.  Consequently, the available experimental data is not sufficient to develop accurate empirical 
equations for v0 and Gcr. It is proposed to use the results of an advanced behavioral model to develop empirical 
equations.  Then, the evaluation of their accuracy can then be based on a comparison with the existing experimental 
data.

The next sections use the equations and the calculations of the MCFT to evaluate the effects of the main parameters 
that influence v0 and Gcr and to develop two simple empirical equations to calculate them.  Then, the results of the 
proposed equations leading to γs are compared with the experimental results from panels tested in pure shear at the 
University of Houston under strain control.  These experimental results are well-documented and were not used in the 
development of the MCFT. Hence, they provide an unbiased evaluation of the equations.

ANALYSIS USING MCFT
Figure 4 summarizes the equations of the MCFT for RC elements subjected to pure shear stresses (Bentz 2000).  

It lists the equilibrium equations, compatibility conditions, and the constitutive models for concrete and steel. The 
shear response depends on the strength and the behavior of the concrete in compression and in tension, the ratio and 
the yield strength of the orthogonal reinforcement, the nominal maximum aggregate size (ag), and the crack spacing 
parameters Sx and Sy.

This paper is concerned with the linear behavior extending from the end of the transition zone till the start of 
yielding (or concrete softening/crushing, whichever occurs first).  In this part of the behavior, the steel is linear-elastic 
irrespective of the MOF of the element and hence, the response is not affected by the yielding strength since, in this 
region, the steel “does not know” how far it is from yielding. Hence, the yielding strength of the x- and y-reinforcement 
do not affect the equations of v0 and Gcr. On the other hand, the check on the ability of the crack to transfer the shearing 
stresses (Eq. 18 in Figure 4) affects the analysis only after yielding of the reinforcement and hence is not relevant to 
part of the behavior under investigation.  Consequently, the aggregate size (ag) and the crack spacing parameters Sx 
and Sy are not included in the proposed equations.  



Shear Strains at Service Load Conditions in Cracked Reinforced Concrete Elements Subjected to Shear84

G
iv

en
: 

 

Fi
gu

re
 4

. E
qu

at
io

ns
 o

f t
he

 M
C

FT
 (b

as
ed

 o
n 

B
en

tz
 2

00
0)

.



85Khaldoun N. Rahal

The post-cracking behavior is affected by the constitutive model for concrete in compression (before the peak 
stress) and by the part of the concrete tension model after cracking and before crack slip (slip takes place after 
yielding). The latter is affected by the concrete strength in tension fcr [taken as  as shown in Eq. (15)] and 
in the tension stiffening factor (kTS) shown in Eq. (17).  

Eq. (14) in Figure 4 shows the equation for a parabolic stress-strain relationship of softened concrete in compression.  
This model is suitable for normal strength concrete. To account for the stiffer pre-peak behavior and the larger strain 
( ) at peak stress in high strength concrete (HSC), the MCFT recommends the use of the equations based on the 
modified Popovics model.  Details of this model can be found elsewhere (Collins et al. 1993).  

For the concrete tension stiffening, Collins et al. (1996) recommends using a factor kTS of 500 instead of the value of 
200 suggested by the original formulations of the MCFT (Vecchio and Collins 1986). The value of 500 was considered 
to be more suitable for a wider range of elements including the thicker University of Toronto shell elements such as 
those tested by Khalifa (1986).  Since this paper aims at proving that simple empirical equations can be obtained, the 
development of the equations will be based on kTS=500 and the modified Popovics model for concrete in compression.  
The compression softening shown in Eq. (13) in Figure 4 is the equation proposed in the original formulation of the 
MCFT (Vecchio and Collins 1986).

The ratios of reinforcement and the concrete compressive strength are the main factors that are considered in the 
development of the equations for v0 and Gcr. The equations of the MCFT are coded in a spreadsheet to generate the 
full shear stress-strain response of membrane elements. This spreadsheet is used to analyze elements to generate data 
that can be used to develop the empirical equations for v0 and Gcr.

Analysis sets

  A total of sixty-seven elements in nine sets were selected for analysis using the MCFT. See Table 1. The properties 
of these elements covered a wide range of possible properties. The concrete strengths ranged from 20 to 110 MPa.  
For each concrete compressive strength, reinforcement ratios were selected to cover under-reinforced, partially under-
reinforced (PUR), and over-reinforced modes of failure. To decide on the balanced reinforcement corresponding to a 
specific concrete strength, the equation proposed by Rahal (2008) was used. The balanced amount of reinforcement 
in each direction corresponds to mechanical reinforcement indexes  ranging linearly from about 0.31 for 
a 20 MPa concrete to about 0.21 for a 110 MPa concrete.

As shown in Table 1, the analysis set 1 was conducted on elements reinforced with . The concrete 
strengths ranged from 20 to 110 MPa, and consequently the reinforcement ratios ρx =  ρy varied. The relatively low ω 
ensured that all elements were UR. The analysis set 2 was similar to set 1 except that the reinforcement indexes were 
larger ( ). They remained smaller than the balanced reinforcement and hence, the elements in this set 
were also UR. In the analysis set 3, the reinforcement indexes ( ) were increased above the balanced 
reinforcement level, and the elements were OR.
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Table 1. Summary of MCFT analyses.

Analysis
set (MPa)

ωx ωy
ρx

(percent)
ρy

(percent)

1 20 to 110 0.10 = ωx 0.5 to 2.75 = ρx

2 20 to 110 0.20 = ωx 1.0 to 5.5 = ρx

3 20 to 110 0.35 = ωx 1.75 to 9.63 = ρx

4 20 0.08 to 0.33 = ωx 0.4 to 1.65 = ρx

5 50 0.05 to 0.60 = ωx 0.63 to 7.5 = ρx

6 100 0.03 to 0.30 = ωx 0.75 to 7.5 = ρx

7 20 0.40 0.04 to 0.6 2.0 0.2 to 3.0

8 50 0.32 0.02 to 0.32 4.0 0.25 to 4.0

9 100 0.28 0.01 to 0.32 7.0 0.25 to 8.0

The concrete compressive strengths in analysis sets 4, 5, and 6 were 20, 50, and 100 MPa respectively. In each set, 
elements of different amounts of equal reinforcement (ωx  = ωy ) were analyzed. Elements with reinforcement indexes 
smaller than balanced levels were UR, while the remaining were OR.

In the analysis set 7,  was selected to be 20 MPa.  The x-direction index ωx was set equal to 0.4, while the 
y-direction reinforcement index ωy varied. The relatively large value of ωx corresponded to over-reinforcement in 
the x-direction. The y-reinforcement was under-reinforced for ωy values less than about 0.31 and over-reinforced for 
larger values. Analysis sets 8 and 9 were similar to set 7 except that  was 50 and 100 MPa, respectively.

The shear response of the sixty-seven elements was obtained using the MCFT analyses. For each response curve, 
the linear part of the post-cracking and pre-peak region was identified, and a simple regression analysis was performed 
to obtain the best-fit straight line. The equation of the line provided the required information on v0 and Gcr.

INTERCEPT POINT v0

Figure 5(a) plots the values of v0 calculated using the MCFT versus  for the analysis sets 1 to 3. The results from 
all three sets show that the v0 was proportional to  irrespective of the reinforcement ratios. As the compressive 
strength  increased, the cracking strength fcr increased. The response curve was pushed upwards leading to a larger 
value of v0. The amount of reinforcement in the three different sets varied considerably, but the effect of this variation 
on v0 was limited. This indicates that v0 was not significantly influenced by the amount of reinforcement nor the MOF.  
It is to be noted that the x-direction steel and the y-direction steel in any specific specimen of the sets 1, 2, and 3 were 
similar.

Figure 5(b) plots the MCFT calculated values of v0 versus the equal reinforcement ratios (ρx = ρy) for the analysis 
sets 4 to 6. In each of the sets, the intercept point was nearly constant. This indicates again that v0 is not significantly 
influenced by the amount of reinforcement for these sets of analyses. The results of analysis sets 4 to 6 are also plotted 
in Figure 5(a) and fit within the general trend previously observed. It is to be noted again that the x-direction steel and 
the y-direction steel in any specimen of these sets were similar.

Based on the above, a best-fit curve for the v0 can be obtained using . A change in the equation for 
fcr (given in Eq. 15) in the analysis led to a proportional change in the intercept stress. Hence, it is more appropriate 
to relate v0 to fcr as follows:
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                                                                                   (19)

Figure 5. Development of equation for v0.

The calculations of Eq. (19) are plotted in Figures 5(a) and 5(b), and a very good agreement with the results of the 
MCFT is obtained.

Figure 5(c) plots the calculated values of v0 versus the reinforcement ratio ρy which was a variable in the sets 7 to 9. 
The values of ρx were relatively large to ensure over-reinforcement in the x-direction. It is shown that, for considerably 
different orthogonal reinforcement ratios, Eq. (19) underestimates the intercept stress. If the reinforcement in one 
direction is significantly weaker than that in the other one, the modulus after cracking becomes slightly softer.  
Consequently, the intercept point is higher. A survey of existing tests on membrane elements revealed that, in the most 
extreme case, the ratio of the larger to the smaller reinforcement ratios in a single element was 9. For such case, Eq. 
(19) underestimates the MCFT result by less than 9% for the three grades of concrete used. This is a limited difference 
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that can be neglected. However, if the effect of unequal reinforcement is to be accounted for, Eq. (19) can be changed 
to include a modification factor as follows:

                                                                                
(20)

where ρmax and ρmin are the larger and the smaller values of ρx and ρy respectively. The modification factor becomes 
unity if the two reinforcement ratios are equal and increases as the ratio of ρmax to ρmin increases.

Table 2. Summary on ratios of MCFT to proposed equations results for 67 analysis data points.

Eq. (19) Eq. (20) Eq. (21)
Mean 1.02 1.0 1.02

Coefficient of variation 5.0% 3.0% 8.0%

Table 2 reports a summary of a comparison between the MCFT data and the results of Eqs. (19) and (20). The 
ratios of the MCFT values of v0 to those calculated using Eq. (19) were computed for the sixty-seven data points.  The 
average value of the ratios was 1.02, and the coefficient of variation was 5%.  For Eq. (20), these values were 1.0 and 
3%, respectively. Table 2 shows that the results improved when Eq. (20) was used instead of Eq. (19). However, it is 
not likely that the use of Eq. (20) would be necessary in most practical cases because the impact on the calculation 
of the shear strain γs is minimal as is shown later in the numerical example. Figure 6 plots a comparison between the 
results of Eq. (19) and those from the MCFT. A good agreement is observed.

Figure 6. Comparison between v0 results from MCFT and from Eq. (19).

Slope Gcr

Figure 7(a) plots the MCFT values of Gcr versus ρx (= ρy) for the results of the normal-strength concrete set 4, 
the medium-strength concrete (MSC) set 5, and the high-strength concrete set 6. As the amount of reinforcement 
increases, the slope of the post-cracking line increases but at a decreasing rate. For all three concrete strengths, the 
same trend is observed, and a single equation can be used to fit the data. Figure 7(b) plots Gcr versus  for the results 
of sets 1 to 3. In each set, the mechanical reinforcement indexes  remained constant.  As  increased, 
the reinforcement ratio ρ increased proportionally, leading to higher values of Gcr.
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Figure 7. Development of equation for Gcr.

Figure 7(c) shows a plot of Gcr versus  for the results of sets 7 (NSC), 8 (MSC), and 9 (HSC). The x-reinforcement 
index and concrete strength were constant in each set. Gcr increased as the amount of y- direction reinforcement 
increased. However, the rate of increase decreased as ρy increased.  

A best-fit of the results of nine sets of data can be obtained using the following equation:

                                                                                 (21)

where Gcr is in MPa. The calculations of Eq. (21) are plotted in Figures 7 (a) to (c), and good agreement with the 
results of the MCFT is obtained.

The results indicate that the slope Gcr was not significantly influenced by the compressive strength of the concrete.  
It depended mainly on the reinforcement ratios. This was clear from the results plotted in Figure 7(a), where elements 
with similar reinforcement had similar Gcr in NSC, MSC, and HSC.  
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Figure 8. Comparison between Gcr results from MCFT and Eq. (21).

Figure 8 compares Gcr from the MCFT analyses with the calculations of Eq. (21). A very good agreement is 
obtained. The ratios of the values of Gcr calculated using the MCFT to those calculated using Eq. (21) were obtained.  
The mean of the 67 ratios was 1.02, and the coefficient of variation was 8%. These results are listed in Table 2.

Shear strain and effective shear modulus at service
When the values of v0 and Gcr are calculated using Eqs. (19) (or 20) and Eq. (21), the shear strain at service level 

stress can be obtained as , or directly as

                                                                                   

(22)

The corresponding effective shear modulus can be obtained as .

Numerical example
A numerical example illustrates why the calculations of the strains at service are affected by Gcr more than v0. It 

also shows the simplicity of the model. The following gives the calculation Gcr, v0, γs and Gserv of HSC specimen VB3 
tested by Hsu and Zhang (1998). The given properties of the element are =102.3 MPa; ρx =0.0598; ρy =0.0120, 
vu =10.2 MPa. Hence, vserv≈0.7vu =0.7(10.2)=7.14 MPa .

The intercept stress v0 is calculated using Eq. (19) as follows:

The slope of the post-cracking linear response is calculated using Eq. (21) as follows:

The strain at service is calculated as .
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The effective shear modulus is calculated as .

The experimentally observed strain at a stress of 7.14 MPa is . The ratio of the experimental to the 
calculated strain is 0.87. If Eq. (20) was used instead of Eq. (19), γs is calculated as . The value of v0 increases 
by 4%, while the value of γs is increased by 1.5% only. For this reason, it was stated earlier that the improvement 
provided in Eq. (20) has a less significant impact on the calculated shear strain at service conditions and is not 
warranted. 

The strain calculated using the MCFT is , and the corresponding ratio of the experimental to the calculated 
strain is 0.92. If a linear-elastic behavior is assumed, with the modulus of elasticity of concrete Ec equal to  
and Poisson's ratio equal to 0.2, the service level strain is calculated as . The ratio of the experimental to the 
calculated values of the strain is 8.1.

EXPERIMENTAL VERIFICATION
In this section, the proposed equations are evaluated based on their ability to model the post-cracking response of 

RC membrane elements, and the calculation of the shear strains at estimated service stress levels.

Data was collected from 17 RC elements tested under strain control conditions at the University of Houston (Pang 
and Hsu, 1995; Hsu and Zhang, 1998). The MCFT was developed based on a different set of experimental data from 
tests conducted at the University of Toronto under stress control conditions. The 17 Houston tests were used by Bentz 
(2000) to provide an unbiased evaluation of the MCFT. They are used here to provide a similar unbiased evaluation 
of the proposed equations.

Post-cracking response

The part of the response modeled by the proposed equation extends from the end of the transition zone (following 
concrete cracking stress) to the peak stress. The peak stress is calculated using a simple model developed by the author 
(Rahal 2008).  

Figures 9 and 10 plot the post-cracking lines based on Eqs. (19) and (21) and compare them with the experimental 
results from ten membrane elements (Pang and Hsu, 1995; Hsu and Zhang, 1998). The response curves calculated 
using the MCFT are also plotted. The six elements shown in Figure 9 were under-reinforced. Three of the elements 
shown in Figure 10 were partially under-reinforced and one was over-reinforced. Half of the elements shown in 
Figures 9 and 10 are normal strength concrete (  from 41 to 44 MPa) and the remaining ones are high strength 
concrete (  > 95 MPa). Table 3 summarizes the properties of the thin RC specimens.  The figures show that 
the simplified equations (19) and (21) compared well with the experimental results and provided a fairly accurate 
representation of the calculations of the MCFT.

Table 3 also reports the values of v0 and Gcr obtained from the experimental results and compares them with the 
calculations of Eqs. (19) and (21). The ratios of the experimentally observed to the calculated values are also listed.  
The average of the 17 ratios for v0 was 0.99, and the coefficient of variation was 21.5%.  For Gcr, the average of the 
ratios was 1.03, and the coefficient of variation was 18.7%. The results are considered adequate, especially that Eqs. 
(19) and (21) were not fine-tuned based on experimental results.
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Figure 9. Comparison between observed and calculated post-cracking response for under-reinforced membranes 
(Pang and Hsu, 1995; and Hsu and Zhang, 1998).
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Figure 10. Comparison between observed and calculated post-cracking response for partially under-reinforced and 
over-reinforced elements (Pang and Hsu, 1995; and Hsu and Zhang, 1998)

Shear strains at service
As shown in the numerical example, the shear strains at estimated service loads can be easily obtained when v0 

and Gcr are calculated. Table 3 lists the service level stresses vserv which were estimated to be equal to 70% of the 
experimentally observed ultimate shear strengths.  
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Table 3 also lists the strains γs–e corresponding to vserv from the experimentally obtained response curves, and the 
strains γs calculated using the proposed equations. It also lists the strains obtained using the MCFT analyses in addition 
to those obtained using the an uncracked linear-elastic analysis. Figure 11 plots the results of the comparison.  The 
ratios of the experimental to the calculated strains are computed for each method, and the results are listed in Table 3.  
For the proposed equations, the average of the 17 ratios was 0.96, and the coefficient of variation was 15.1%. These 
values were 1.01 and 13.4% for the results of the MCFT, respectively. It is observed that the accuracy of the proposed 
simple equations is comparable to that of the iterative MCFT. This is also evident from Figure 11. The average and 
coefficient of variation corresponding to the ratios based on linear-elastic uncracked behavior were 9.55 and 30.4%, 
respectively. As expected, the strains calculated using the traditional approach were nearly an order of magnitude 
smaller than the experimental results. 

Figure 11. Comparison between observed and calculated shear strains at service stress.

SUMMARY AND CONCLUSIONS
This paper presented two simple equations that can be used to calculate the post-cracking pre-peak part of the shear 

stress-strain response curve of RC membrane elements. Membranes subjected to service level of stresses are within 
this part of the response, and hence the model can be used to calculate the shear strains at service conditions. 

The post-cracking response was modeled as a straight line. The slope of the line represents the post-cracking shear 
modulus Gcr and the constant represents the intercept stress v0 at zero strain. The results of the MCFT were used to 
identify the main factors that influence the two constants needed to model the linear response. The shear modulus was 
found to depend mainly on the ratios of the orthogonal reinforcement, while the intercept stress was found to depend 
mainly on the tensile strength of the concrete. Two simple equations were proposed.

The post-cracking response calculated using the proposed equations was compared with the experimentally 
observed post-cracking stress-strain response from RC membrane elements and with the calculations of the MCFT for 
these elements.  A very good agreement was observed.

The model was also used to calculate the shear strains corresponding to shear stresses at service conditions.  The 
ratio of the experimentally observed to the calculated shear strains was computed for the 17 specimens. The average 
of the ratios was 0.96, and the coefficient of variation was 15.1%. For the calculations of the MCFT, the average of 
the ratios was 1.01, and the coefficient of variation was 13.4%. The accuracy of the proposed equation was, hence, 
comparable to that of the iterative MCFT. The calculations based on an uncracked linear-elastic behavior severely 
underestimated the service shear strains. The average of the ratios of the observed to the calculated strains was 9.55, 
and the coefficient of variation was 30.4%.
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NOTATIONS

ga     = nominal maximum aggregate size

;c sE E  = moduli of elasticity of concrete and steel, respectively
'

cf     = compressive strength of concrete

crf     = tensile strength of concrete

1f      = principal tensile stress in concrete

2f      = principal compressive stress in concrete

2 maxf −  = softened compressive strength in concrete

sf     = stress in steel

;sx syf f = average stress in steel in x- and y-directions respectively

sx crf −   = stress in steel in x-direction at crack location

sy crf −   = stress in steel in y-direction at crack location

yf     = yield strength of reinforcement

y xf −    = yield strength of x-reinforcement

y yf −     = yield strength of y-reinforcement

crG     = post-cracking shear modulus

    = post-cracking shear modulus based on experimental data

     = effective cracked shear modulus at service conditions

    = shear modulus before cracking

   = factor in tension-stiffening equation

     = vertical distance between x-direction bars

        = horizontal distance between y-direction bars

     = average spacing of diagonal cracks

v    = shear stress

    = calculated intercept stress at zero strain

    = intercept stress based on experimental data

    = limiting shear stress on the crack surface

    = cracking shear stress

    = estimated service shear stress

   = nominal ultimate shear strength
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     = width of diagonal crack 

    = strain in concrete at peak compressive stress

    = cracking strain of concrete

    = strain in x-direction

   = strain in steel reinforcement

    = strain in y-direction

    = principal tensile strain in concrete

    = principal compressive strain in concrete

    = angle of inclination of principal compressive stresses

    = shear strain

    = shear strain at service stress

    = shear strain at service stress based on experimental data

    = reinforcement ratio

    = maximum of  and 

    = minimum of  and 

   = reinforcement ratio in x-direction

    = reinforcement ratio in y-direction

    = mechanical reinforcement index

    = mechanical reinforcement index in x-direction

    = mechanical reinforcement index in y-direction.
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