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ABSTRACT 

This paper deals with designing a control force to create nodal point(s) having zero displacement and/or zero 
slope at selected locations in a vibrating beam structure excited by multiple harmonic forces. It is shown that the 
steady state vibrations at desired points can be eliminated using applied control forces. The control forces design 
method is implemented using dynamic Green’s functions that transform the equations of motion from differential to 
algebraic equations, in which the resulting solution is analytic and exact. The control problem is greatly simplified 
by utilizing the superposition principle that leads to calculating the control forces to create node(s) for each excitation 
frequency independently. The calculated control forces can be realized using passive elements such as masses and 
springs connected to the beam having reaction forces equal to the calculated control forces. The effectiveness of the 
proposed method is demonstrated on various cases using numerical examples. Through examples, it was shown that 
creating node(s) with zero deflection, as well as zero slope, not only results in isolated stationary points, but also 
suppresses the vibrations along a wide region of the beam.  

 
Keywords: Vibration control; Green’s function; Flexible arm; Vibration absorber. 

 

INTRODUCTION 

In recent years, there has been a considerable interest in modeling and control of flexible structures. This is due 
to the use of lightweight materials for the purposes of speed and fuel efficiency. Therefore, these structures suffer 
from persistent vibrations due to low internal damping, causing problems such as human discomfort, component 
failure, performance degradation, noise, and many other problems. Moreover, the performance is substantially 
degraded in some structures equipped with sensitive elements due to the occurrence of vibration. Therefore, it is 
desired to suppress the vibration from specific part of the structure more than other parts. For example, large flexible 
space structures are usually built from lightweight materials having low damping. Therefore, if these structures are 
exposed to any excitation, then the vibrations may propagate throughout the whole structure. In such a case, it is 
desirable to eliminate the vibrations in some sensitive parts, where an extremely sensitive antenna is installed. 

 
There are a number of ways to eliminate or minimize the vibrations in a flexible structure. The first one is to 

remove the disturbances that excite the structure. Unfortunately, it may be difficult or impossible to interfere with the 
nature of the driving force. The other method is to adjust the structural system to change its dynamics that results in 
less vibrations, especially during resonance. This is, sometimes, a difficult approach to be applied on existing 
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structures. The third solution is to utilize one of the vibration control techniques to either absorb the vibrational energy 
or load the transmission path of the disturbing vibration. 

 
Many researchers have investigated the topic of vibration control using the abovementioned methods. The first 

vibration absorber has been designed and patented by Frahm (1911). Ormondroyd and Den Hartog (1928) have 
described the first mathematical theory for the design of the dynamic vibration absorber (DVA). Korenev and 
Reznikov (1993) have presented theoretical and practical studies on the design of dynamic vibration absorbers. 

 
The problem of beam vibrations with attached passive components, for example, masses and springs, falls in 

the class of the dynamics of combined systems. The free vibrations of such systems are studied extensively in the 
literature (Cha 2001; Low 2003; Banerjee and Sobey 2003; Wu and Chou 1999). The authors of these papers have 
focused their research on evaluating the free vibrations by calculating the natural frequencies and mode shapes. Other 
researchers have used the assumed modes method to solve different vibration problems in structures (for example, 
Ginsberg 2001). Cha and Pierre (1999) have used the assumed modes method to create points with zero displacements 
to the normal modes of a beam by attaching masses and springs and properly selecting the values of their parameters. 
Cha and Zhou (2006) have enforced points with both zero displacements and zero slopes in a linear structure using 
elastically attached masses and rotational springs during harmonic excitations. The dynamic green function has been 
utilized by Alsaif and Foda (2002) to compute the optimal values of masses and/or springs and their locations along 
a beam in order to reduce the vibrations in a specified region. Similarly, Foda and Albassam (2006) have derived 
exact solutions for the steady state response of a harmonically excited Timoshenko beam using Green’s function by 
attaching springs and/or masses. Their objective was to confine the vibrations in a region of the beam. Foda and 
Alsaif (2009) have developed a numerical method to impose nodes with zero deflection, as well as slope, on a beam 
structure excited by harmonic force using translational and rotational oscillators. 

 
On the other hand, points or regions with zero deflections can be created in distributed parameter systems using 

active vibration control methods. Ram (2002) and Singh and Ram (2003) have obtained closed form expression for 
the feedback control gain to impose a node at the end of axially vibrating rods and transversely vibrating beams using 
displacement feedback control. Albassam (2019) has obtained analytical expressions for the gains of the feedback 
control forces in order to create nodes with zero displacements and zero slopes using dynamic Green’s function. 

 
It is to be noted that all of the above researchers have considered the problem of forcing input with single 

frequency. Unfortunately, in real applications, the structure, generally, is exposed to excitations with multiple 
frequencies. Cha (2005) has utilized spring and mass elements to induce nodes along harmonically excited beam with 
an added constraint on the vibration amplitude of oscillator mass. Later, Cha and Ren (2006) have generalized the 
method to induce nodes for beams excited by multiple frequencies using the assumed modes method. Subsequently, 
and due to the difficulty of the numerical procedure reported in Cha and Ren (2006), Cha and Buyco (2015) have 
developed an efficient method to tune the oscillator parameters in order to induce nodes on a beam using the active 
force approach. 

 
In the present work, control forces are designed for the purpose of creating nodes (points with zero 

displacements) or fixed nodes (points with zero displacements and zero slopes) along any beam structure during 
harmonic excitation using dynamic Green’s function. It is assumed that the beam follows the Euler-Bernoulli beam 
theory assumptions. In addition, the effects of internal and external damping are included in the beam model. The 
problem is formulated using dynamic Green’s function, which results in exact and straightforward solution. This 
method is free from numerical inaccuracies when compared with other approximate methods that utilize modal 
superposition techniques. Furthermore, the boundary conditions are included into the derivation of the Green’s 
function of the corresponding beam. 
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The main contribution of the paper, compared with similar research work, is the utilization of dynamic Green’s 
function that results in an algebraic equation for the steady-state beam deflection. Furthermore, since beam boundary 
conditions are embedded in the derivation of Green’s function, different beam types can be considered. Therefore, 
the resulting solution is simple, exact, and general. 

 
The paper is organized as follows. Following this introduction, the equation of motion in the form of partial 

differential equation is derived in Section 2 using Hamilton’s principle. In Section 3, the steady-state solution for the 
beam deflection is obtained using Green’s function. The numerical procedure to impose multiple nodes and fixed 
nodes is presented in Section 4. Section 5 demonstrates the application of passive elements, such as masses and 
springs, as means to generate the applied control forces. The application of the proposed vibration control technique 
on numerical examples for simulations and discussions is shown in Section 6. Finally, conclusions and summary of 
the paper findings are laid out in Section 7.  

 

EQUATION OF MOTION 

The transverse vibration problem of a uniform Euler Bernoulli beam of length 𝐿𝐿, originally at rest, is shown in 
Figure 1. The beam can have any boundary conditions at its two ends. It is assumed that the beam vibration is caused 
by external harmonic forces, represented by 𝑓𝑓(𝑥𝑥, 𝑡𝑡), having multiple frequencies, given by 

 

𝑓𝑓 𝑥𝑥, 𝑡𝑡 = 𝐹𝐹+𝑒𝑒-./0𝛿𝛿 𝑥𝑥 − 𝑥𝑥3/

4

+56

1  

where 𝑝𝑝 is the number of excitation forces, 𝐹𝐹+, 𝜔𝜔+, and 𝑥𝑥3/ are the amplitude, frequency, and location of the 
𝑖𝑖0; excitation force, respectively, 𝑗𝑗 = −1 is the imaginary unit, and 𝛿𝛿(	
  ) is the Dirac Delta function. 

 
Figure 1. Configuration of a harmonically excited elastic beam with vibration control force. 

 
It is assumed that a certain application requires to impose 𝑟𝑟 nodes on the beam structure using the applied 

control forces  
given by 

𝑓𝑓> 𝑥𝑥, 𝑡𝑡 = 𝐹𝐹>/?𝑒𝑒
-./0𝛿𝛿 𝑥𝑥 − 𝑥𝑥>/?

@

A56

4

+56

2  

where 𝐹𝐹>/?  and 𝑥𝑥>/?  are the amplitude and location of the 𝑖𝑖𝑙𝑙0;  applied force. In general, a total of 𝑝𝑝×𝑟𝑟 
applied forces are required to impose 𝑟𝑟 nodes on a beam structure that is excited by 𝑝𝑝 harmonic forces (Cha and 
Ren 2006 and Cha and  
Buyco 2015). 

𝑤𝑤(𝑥𝑥, 𝑡𝑡)	
   𝐹𝐹+𝑒𝑒-./0 	
  

𝑥𝑥3/ 	
  

𝑥𝑥>/F 	
   𝐹𝐹>/F𝑒𝑒
-./0	
  

𝑥𝑥G	
  

𝑥𝑥	
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The first step in designing the applied control forces to impose the desired nodes on the beam structure is to 

derive the equation of motion for the beam system shown in Figure 1 using Hamilton’s principle. The kinetic energy 
of the beam system can be  
written as 

𝑇𝑇 =
1
2

𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕 𝑥𝑥, 𝑡𝑡

𝜕𝜕𝜕𝜕

L

𝑑𝑑𝑑𝑑
N

O

3  

where 𝜌𝜌 is the beam material density in kg/m3, 𝐴𝐴 is the beam cross sectional area in m2, 𝑤𝑤(𝑥𝑥, 𝑡𝑡) is the beam 
transverse deflection in m, and 𝑡𝑡 is the time in s. The potential energy can be written as: 

 

𝑉𝑉 =
1
2

𝐸𝐸𝐸𝐸
𝜕𝜕L𝑤𝑤 𝑥𝑥, 𝑡𝑡

𝜕𝜕𝑥𝑥L

LN

O

𝑑𝑑𝑑𝑑 4  

where 𝐸𝐸 is the beam modulus of elasticity, in N/m2, and 𝐼𝐼 is the moment of inertia of the beam cross sectional 
area, in m4. The virtual work done by the external nonconservative forces can be expressed as 

 

𝑊𝑊GV = 𝑓𝑓 𝑥𝑥, 𝑡𝑡 + 𝑓𝑓> 𝑥𝑥, 𝑡𝑡 + 𝑓𝑓X(𝑥𝑥, 𝑡𝑡) 𝑤𝑤 𝑥𝑥, 𝑡𝑡 𝑑𝑑𝑑𝑑
N

O

5  

where 𝑓𝑓X(𝑥𝑥, 𝑡𝑡) represents the damping forces, given by 

𝑓𝑓X 𝑥𝑥, 𝑡𝑡 = 𝑐𝑐6
𝜕𝜕𝜕𝜕 𝑥𝑥, 𝑡𝑡

𝜕𝜕𝜕𝜕
+ 𝑐𝑐L

𝜕𝜕[𝑤𝑤 𝑥𝑥, 𝑡𝑡
𝜕𝜕𝑥𝑥\𝜕𝜕𝜕𝜕

6  

where 𝑐𝑐6 is the coefficient of external viscous damping due to friction with the surroundings, in N.s/m, and 𝑐𝑐L 
is the coefficient of internal viscoelastic damping, in N.s.m3. 

 
The equation of motion can be derived by applying Hamilton’s principle, given by 

𝛿𝛿 𝑇𝑇 − 𝑉𝑉 𝑑𝑑𝑑𝑑 + 𝛿𝛿𝑊𝑊GV𝑑𝑑𝑑𝑑

0^

0_

0^

0_

= 0 7  

 

after substituting Equations (3), (4), (5), and (6) and performing the variational mathematics with integration by 
parts, the following equation of motion can be obtained. 

 

𝐸𝐸𝐸𝐸
𝜕𝜕\𝑤𝑤 𝑥𝑥, 𝑡𝑡

𝜕𝜕𝑥𝑥\ + 𝜌𝜌𝜌𝜌
𝜕𝜕L𝑤𝑤 𝑥𝑥, 𝑡𝑡

𝜕𝜕𝑡𝑡L
+ 𝑐𝑐6

𝜕𝜕𝜕𝜕 𝑥𝑥, 𝑡𝑡
𝜕𝜕𝜕𝜕

+ 𝑐𝑐L
𝜕𝜕[𝑤𝑤 𝑥𝑥, 𝑡𝑡
𝜕𝜕𝑥𝑥\𝜕𝜕𝜕𝜕

= 𝐹𝐹+𝑒𝑒-./0𝛿𝛿 𝑥𝑥 − 𝑥𝑥3/

4

+56

+ 𝐹𝐹>/?𝑒𝑒
-./0𝛿𝛿 𝑥𝑥 − 𝑥𝑥>/?

@

A56

4

+56

8  

It is to be noted that, since damping exists, complex exponential functions are used in the representation of the 
excitation and applied control forces resulting in simpler mathematical manipulations. Consequently, it assumed that 
the input forces are given by their real parts which results in the real part of the beam deflection. 
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The paper is organized as follows. Following this introduction, the equation of motion in the form of partial 
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beam deflection is obtained using Green’s function. The numerical procedure to impose multiple nodes and fixed 
nodes is presented in Section 4. Section 5 demonstrates the application of passive elements, such as masses and 
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A56

4

+56

2  

where 𝐹𝐹>/?  and 𝑥𝑥>/?  are the amplitude and location of the 𝑖𝑖𝑙𝑙0;  applied force. In general, a total of 𝑝𝑝×𝑟𝑟 
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-./0	
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PROBLEM FORMULATION 

In this section, the steady-state beam deflection, in the form of algebraic equation, is solved using Green’s 
function. Because the system under consideration is assumed to be linear, the principle of superposition applies and 
the solution of Equation (8) is assumed to have the following form: 

𝑤𝑤 𝑥𝑥, 𝑡𝑡 = 𝑊𝑊+ 𝑥𝑥 𝑒𝑒-./0

4

+56

9  

where 𝑊𝑊+(𝑥𝑥) is the steady-state deflection of the beam at location x due to harmonic excitation and control 
forces. Consequently, the system will execute a simple harmonic motion with the same response frequency as the 
driving frequency. 

 
Substituting Equation (9) into Equation (8) results in 
 

𝐸𝐸𝐸𝐸 + 𝑗𝑗𝜔𝜔+𝑐𝑐L
𝑑𝑑\𝑊𝑊+ 𝑥𝑥
𝑑𝑑𝑥𝑥\ + 𝑗𝑗𝜔𝜔+𝑐𝑐6 − 𝜌𝜌𝜌𝜌𝜔𝜔+

L 𝑊𝑊+ 𝑥𝑥
4

+56

𝑒𝑒-./0 = 𝐹𝐹+𝛿𝛿 𝑥𝑥 − 𝑥𝑥+3 + 𝐹𝐹>/?𝛿𝛿 𝑥𝑥 − 𝑥𝑥>/?

@

A56

4

+56

𝑒𝑒-./0(10)	
  

Once again, and by virtue of the superposition principle, Equation (10) reveals that the governing equation for 
the steady-state response due to each harmonic excitation force can be considered separately as 

 

𝐸𝐸𝐸𝐸 + 𝑗𝑗𝜔𝜔+𝑐𝑐L
𝑑𝑑\𝑊𝑊+ 𝑥𝑥
𝑑𝑑𝑥𝑥\ + 𝑗𝑗𝜔𝜔+𝑐𝑐6 − 𝜌𝜌𝜌𝜌𝜔𝜔+

L 𝑊𝑊+ 𝑥𝑥 = 𝐹𝐹+𝛿𝛿 𝑥𝑥 − 𝑥𝑥+3 + 𝐹𝐹>/?𝛿𝛿 𝑥𝑥 − 𝑥𝑥>/?

@

A56

,
	
  

	
  	
  𝑖𝑖 = 1,2, … , 𝑝𝑝 11

 

Therefore, the design of the applied control force(s) and the resulting steady-state response can be calculated 
separately for each excitation force and then combined, using Equation (9), to obtain the total steady-state response 
due to the total number of distinct harmonic excitations. 

 
At this stage, it is convenient to work with dimensionless quantities so that the analysis becomes more general. 

Therefore, we define the following dimensionless variables and coefficients: 
 

𝑥𝑥 =
𝑥𝑥
𝐿𝐿
	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑊𝑊+ =

𝑊𝑊+

𝑊𝑊O+
	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝜔𝜔+ =

𝜔𝜔+

𝜔𝜔O
12  

where 

𝑊𝑊O/ =
𝐹𝐹+𝐿𝐿e

𝐸𝐸𝐸𝐸
	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  𝜔𝜔O =

𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝐿𝐿\

13  

and 

𝑐𝑐6 =
𝜔𝜔O𝐿𝐿\𝑐𝑐6
𝐸𝐸𝐸𝐸

	
  ,	
  	
  	
  	
  𝑐𝑐L =
𝜔𝜔O𝑐𝑐L
𝐸𝐸𝐸𝐸

,	
  	
  	
  𝐹𝐹>/? =
𝐹𝐹>/?
𝐹𝐹+

, 14 	
  	
  	
   

The resulting dimensionless form of Equation (11) becomes 
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𝑊𝑊+
\ 𝑥𝑥 −

𝜔𝜔+
L − 𝑗𝑗𝜔𝜔+𝑐𝑐6
1 + 𝑗𝑗𝜔𝜔+𝑐𝑐L

𝑊𝑊+ 𝑥𝑥 =
1

1 + 𝑗𝑗𝜔𝜔+𝑐𝑐L
𝛿𝛿 𝑥𝑥 − 𝑥𝑥+3 + 𝐹𝐹>/?𝛿𝛿 𝑥𝑥 − 𝑥𝑥>/?

@

A56

, 𝑖𝑖 = 1,2, … , 𝑝𝑝 (15) 

where 𝑊𝑊+
(\) 𝑥𝑥 = Xfg

Xhf
 and 𝛿𝛿 𝐿𝐿𝑥𝑥 = 6

N
𝛿𝛿(𝑥𝑥). 

Before proceeding with the solution of Equation (15), the caret on the dimensionless quantities is dropped for 
the sake of convenience. The solution of Equation (15) is sought by utilizing the dynamic Green’s function. Hence, 
if the dynamic Green’s function, denoted by 𝐺𝐺+(𝑥𝑥, 𝑢𝑢), is known then the solution of Equation (15) is given by the 
following integral form: 

 

𝑊𝑊+ 𝑥𝑥 =
1

1 + 𝑗𝑗𝜔𝜔+𝑐𝑐L
𝐺𝐺+ 𝑥𝑥, 𝑢𝑢 𝛿𝛿 𝑢𝑢 − 𝑥𝑥+3 + 𝐹𝐹>/?

@

A56

𝐺𝐺+ 𝑥𝑥, 𝑢𝑢 𝛿𝛿 𝑢𝑢 − 𝑥𝑥>/?

6

O

𝑑𝑑𝑑𝑑 16  

The Green’s function, 𝐺𝐺+(𝑥𝑥, 𝑢𝑢), for the beam is defined as the response at position 𝑥𝑥 due to a unit concentrated 
force applied at position 𝑢𝑢. Utilizing the properties of the Dirac Delta function, the integration in Equation (16) can 
be carried out to give 

 

𝑊𝑊+ 𝑥𝑥 =
1

1 + 𝑗𝑗𝜔𝜔+𝑐𝑐L
𝐺𝐺+ 𝑥𝑥, 𝑥𝑥+3 + 𝐹𝐹>/?

@

A56

𝐺𝐺+ 𝑥𝑥, 𝑥𝑥>/? 17  

Equation (17) is an algebraic equation that provides the exact closed form solution for the beam steady-state 
deflection at any location resulting from the application of the excitation and control forces. It requires the calculations 
of the Green’s function, 𝐺𝐺+(𝑥𝑥, 𝑢𝑢), that can be obtained from the solution of the following differential equation (Roach 
1970): 

 
𝑑𝑑\𝐺𝐺+ 𝑥𝑥, 𝑢𝑢

𝑑𝑑𝑥𝑥\ − 𝑞𝑞+\	
  𝐺𝐺+ 𝑥𝑥, 𝑢𝑢 = 𝛿𝛿 𝑥𝑥 − 𝑢𝑢 18  

where 𝑞𝑞+\ is given by 

𝑞𝑞+\ =
𝜔𝜔+

L − 𝑗𝑗𝜔𝜔+𝑐𝑐6
1 + 𝑗𝑗𝜔𝜔+𝑐𝑐L

19  

 

From Equations (18) and (19), it is observed that Green’s function varies with the excitation frequency among 
other parameters. Furthermore, Green’s function becomes complex if either the beam external damping or internal 
damping is present. Several researchers have reported the solution of Equation (18) (see, for example, Roach 1970 
and Roach 1982) for different beam boundary conditions. For example, Green’s function for a simply supported 
beam is given by 

 

𝐺𝐺+ 𝑥𝑥, 𝑢𝑢 =
1

2𝑞𝑞+e sin 𝑞𝑞+𝐿𝐿 sinh 𝑞𝑞+𝐿𝐿
	
  
𝑔𝑔+(𝑥𝑥, 𝑢𝑢), 0 ≤ 𝑥𝑥 ≤ 𝑢𝑢
𝑔𝑔+(𝑢𝑢, 𝑥𝑥), 𝑥𝑥 ≤ 𝑢𝑢 ≤ 𝐿𝐿 20  

PROBLEM FORMULATION 

In this section, the steady-state beam deflection, in the form of algebraic equation, is solved using Green’s 
function. Because the system under consideration is assumed to be linear, the principle of superposition applies and 
the solution of Equation (8) is assumed to have the following form: 

𝑤𝑤 𝑥𝑥, 𝑡𝑡 = 𝑊𝑊+ 𝑥𝑥 𝑒𝑒-./0

4

+56

9  

where 𝑊𝑊+(𝑥𝑥) is the steady-state deflection of the beam at location x due to harmonic excitation and control 
forces. Consequently, the system will execute a simple harmonic motion with the same response frequency as the 
driving frequency. 

 
Substituting Equation (9) into Equation (8) results in 
 

𝐸𝐸𝐸𝐸 + 𝑗𝑗𝜔𝜔+𝑐𝑐L
𝑑𝑑\𝑊𝑊+ 𝑥𝑥
𝑑𝑑𝑥𝑥\ + 𝑗𝑗𝜔𝜔+𝑐𝑐6 − 𝜌𝜌𝜌𝜌𝜔𝜔+

L 𝑊𝑊+ 𝑥𝑥
4

+56

𝑒𝑒-./0 = 𝐹𝐹+𝛿𝛿 𝑥𝑥 − 𝑥𝑥+3 + 𝐹𝐹>/?𝛿𝛿 𝑥𝑥 − 𝑥𝑥>/?

@

A56

4

+56

𝑒𝑒-./0(10)	
  

Once again, and by virtue of the superposition principle, Equation (10) reveals that the governing equation for 
the steady-state response due to each harmonic excitation force can be considered separately as 

 

𝐸𝐸𝐸𝐸 + 𝑗𝑗𝜔𝜔+𝑐𝑐L
𝑑𝑑\𝑊𝑊+ 𝑥𝑥
𝑑𝑑𝑥𝑥\ + 𝑗𝑗𝜔𝜔+𝑐𝑐6 − 𝜌𝜌𝜌𝜌𝜔𝜔+

L 𝑊𝑊+ 𝑥𝑥 = 𝐹𝐹+𝛿𝛿 𝑥𝑥 − 𝑥𝑥+3 + 𝐹𝐹>/?𝛿𝛿 𝑥𝑥 − 𝑥𝑥>/?

@

A56

,
	
  

	
  	
  𝑖𝑖 = 1,2, … , 𝑝𝑝 11

 

Therefore, the design of the applied control force(s) and the resulting steady-state response can be calculated 
separately for each excitation force and then combined, using Equation (9), to obtain the total steady-state response 
due to the total number of distinct harmonic excitations. 

 
At this stage, it is convenient to work with dimensionless quantities so that the analysis becomes more general. 

Therefore, we define the following dimensionless variables and coefficients: 
 

𝑥𝑥 =
𝑥𝑥
𝐿𝐿
	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑊𝑊+ =

𝑊𝑊+

𝑊𝑊O+
	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝜔𝜔+ =

𝜔𝜔+

𝜔𝜔O
12  

where 

𝑊𝑊O/ =
𝐹𝐹+𝐿𝐿e

𝐸𝐸𝐸𝐸
	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  𝜔𝜔O =

𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝐿𝐿\

13  

and 

𝑐𝑐6 =
𝜔𝜔O𝐿𝐿\𝑐𝑐6
𝐸𝐸𝐸𝐸

	
  ,	
  	
  	
  	
  𝑐𝑐L =
𝜔𝜔O𝑐𝑐L
𝐸𝐸𝐸𝐸

,	
  	
  	
  𝐹𝐹>/? =
𝐹𝐹>/?
𝐹𝐹+

, 14 	
  	
  	
   

The resulting dimensionless form of Equation (11) becomes 
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where 

𝑔𝑔+ 𝑥𝑥, 𝑢𝑢 = sinh 𝑞𝑞+𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠 𝑞𝑞+𝑥𝑥 sin 𝑞𝑞+𝐿𝐿 − 𝑞𝑞+𝑢𝑢 − sin 𝑞𝑞+𝐿𝐿 sinh 𝑞𝑞+𝑥𝑥 sinh 𝑞𝑞+𝐿𝐿 − 𝑞𝑞+𝑢𝑢 (21) 

and 𝑔𝑔+(𝑢𝑢, 𝑥𝑥) is obtained by replacing 𝑥𝑥 with 𝑢𝑢 in Equation (21). 

 

ENFORCING NODE(S) AND FIXED NODE(S) 

One Node 

The derivations for the analytical solution of the applied control force that results in creating a point, at location 
𝑥𝑥G, on a beam having zero deflection, called a node, is presented in this section. First, the deflection at location 𝑥𝑥G 
is defined using Equation (17) to obtain 

𝑊𝑊+ 𝑥𝑥G =
1

1 + 𝑗𝑗𝜔𝜔+𝑐𝑐L
𝐺𝐺+ 𝑥𝑥G, 𝑥𝑥+3 + 𝐹𝐹>/_𝐺𝐺+ 𝑥𝑥G, 𝑥𝑥>/_ 22  

To create a stationary point at location 𝑥𝑥G on the beam, we set the righthand side of Equation (22) to zero, to 
give 

 
𝐺𝐺+ 𝑥𝑥G, 𝑥𝑥+3 + 𝐹𝐹>/_𝐺𝐺+ 𝑥𝑥G, 𝑥𝑥>/_ = 0 23  

Solving Equation (23) for the amplitude of the control force results in 

𝐹𝐹>/_ = −
𝐺𝐺+ 𝑥𝑥G, 𝑥𝑥+3
𝐺𝐺+ 𝑥𝑥G, 𝑥𝑥>/_

24  

As seen in Equation (24), the calculation of the amplitude of the 𝑖𝑖10; applied control force to create a stationary 
point (or node) on the beam that is vibrating as a result of the application of the excitation force having amplitude 𝐹𝐹+ 
and frequency 𝜔𝜔+ is very simple, exact, and straightforward. Next, the calculations for the amplitudes of the other 
excitation forces to create a stationary point on the same location are performed separately. Finally, the steady-state 
deflection 𝑊𝑊+(𝑥𝑥) can be calculated using Equation (17) and the total response is obtained using Equation (9). 
 

Multiple Nodes 

In this section, we outline the numerical procedure for calculating the amplitudes of the applied control forces 
with the objective of creating 𝑟𝑟 nodes on the beam. In general, each node requires one control force to be designed 
and applied to the beam. Substituting 𝑥𝑥 = 𝑥𝑥G_, 𝑥𝑥G^, … , 𝑥𝑥Gt  in Equation (17) results in 𝑟𝑟  simultaneous linear 
algebraic equations in 𝑟𝑟 unknowns. The unknowns are the steady-state amplitudes for the applied control forces, 
i.e., 𝐹𝐹>/_, 𝐹𝐹>/^, … , 𝐹𝐹>/t responsible for generating 𝑟𝑟 nodes. The resulting 𝑟𝑟 equations are given, in matrix form, by 

 
𝑨𝑨𝑨𝑨 = 𝒃𝒃 25  

where 
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𝑨𝑨 =

𝐺𝐺+ 𝑥𝑥G_, 𝑥𝑥>/_ 𝐺𝐺+ 𝑥𝑥G_, 𝑥𝑥>/^ ⋯
𝐺𝐺+ 𝑥𝑥G^, 𝑥𝑥>/_ 𝐺𝐺+ 𝑥𝑥G^, 𝑥𝑥>/^ ⋯

⋮ ⋮ ⋮
𝐺𝐺+ 𝑥𝑥Gt, 𝑥𝑥>/_ 𝐺𝐺+ 𝑥𝑥Gt, 𝑥𝑥>/^ ⋯

	
  	
  

𝐺𝐺+ 𝑥𝑥G_, 𝑥𝑥>/t
𝐺𝐺+ 𝑥𝑥G^, 𝑥𝑥>/t

⋮
𝐺𝐺+ 𝑥𝑥Gt, 𝑥𝑥>/t @×@

	
   26  

 

𝒛𝒛 = 𝐹𝐹>/_ 𝐹𝐹>/^	
  	
  ⋯ 𝐹𝐹>/t @×6
z 27  

 

𝒃𝒃 = − 𝐺𝐺+ 𝑥𝑥G_, 𝑥𝑥+3 𝐺𝐺+ 𝑥𝑥G^, 𝑥𝑥+3 	
  	
  ⋯ 𝐺𝐺+ 𝑥𝑥Gt, 𝑥𝑥+3 @×6
z

28  

The superscript 𝑇𝑇 denotes vector transposition. Once again, the same procedure is repeated for every excitation 
force independently. 

 
Multiple Fixed Nodes 

A fixed node is a point on a beam having both zero deflection as well as zero slope. To create 𝑟𝑟 fixed nodes, 
2𝑟𝑟 control forces are required. Physically, these two forces can produce the transverse and rotational displacements 
required to create the fixed node. The 2𝑟𝑟 equations with 2𝑟𝑟 unknowns can be identified by replacing 𝑟𝑟 with 2𝑟𝑟 
in Equation (17). The first 𝑟𝑟 equations are derived by substituting 𝑥𝑥 = 𝑥𝑥G_, 𝑥𝑥G^, … , 𝑥𝑥Gt in Equation (17) and setting 
them equal to zero. The second 𝑟𝑟 equations are derived by taking the derivative of Equation (17) with respect to 𝑥𝑥 
and then substituting 𝑥𝑥 = 𝑥𝑥G_, 𝑥𝑥G^, … , 𝑥𝑥Gt and setting them equal to zero. The resulting linear algebraic equations, 
in matrix form, is given by 

 
𝑨𝑨𝑨𝑨 = 𝒃𝒃 29  

where 

𝑨𝑨 =

𝐺𝐺+ 𝑥𝑥G_, 𝑥𝑥>/_ 𝐺𝐺+ 𝑥𝑥G_, 𝑥𝑥>/^ ⋯
𝐺𝐺+ 𝑥𝑥G^, 𝑥𝑥>/_ 𝐺𝐺+ 𝑥𝑥G^, 𝑥𝑥>/^ ⋯

⋮ ⋮ ⋮
𝐺𝐺+ 𝑥𝑥Gt, 𝑥𝑥>/_ 𝐺𝐺+ 𝑥𝑥Gt, 𝑥𝑥>/^ ⋯

	
  	
  

𝐺𝐺+ 𝑥𝑥G_, 𝑥𝑥>/t

𝐺𝐺+ 𝑥𝑥G^, 𝑥𝑥>/t

⋮
𝐺𝐺+ 𝑥𝑥Gt, 𝑥𝑥>/t

	
  	
  

𝐺𝐺+ 𝑥𝑥G_, 𝑥𝑥>/ t{_ 𝐺𝐺+ 𝑥𝑥G_, 𝑥𝑥>/ t{^ ⋯
𝐺𝐺+ 𝑥𝑥G^, 𝑥𝑥>/ t{_ 𝐺𝐺+ 𝑥𝑥G^, 𝑥𝑥>/ t{^ ⋯

⋮ ⋮ ⋮
𝐺𝐺+ 𝑥𝑥Gt, 𝑥𝑥>/ t{_ 𝐺𝐺+ 𝑥𝑥Gt, 𝑥𝑥>/ t{^ ⋯

	
  	
  

𝐺𝐺+ 𝑥𝑥G_, 𝑥𝑥>/ ^t

𝐺𝐺+ 𝑥𝑥G^, 𝑥𝑥>/ ^t

⋮
𝐺𝐺+ 𝑥𝑥Gt, 𝑥𝑥>/ ^t

𝐺𝐺+
| 𝑥𝑥G_, 𝑥𝑥>/_ 𝐺𝐺+

| 𝑥𝑥G_, 𝑥𝑥>/^ ⋯
𝐺𝐺+
| 𝑥𝑥G^, 𝑥𝑥>/_ 𝐺𝐺+

| 𝑥𝑥G^, 𝑥𝑥>/^ ⋯
⋮ ⋮ ⋮

𝐺𝐺+
| 𝑥𝑥Gt, 𝑥𝑥>/_ 𝐺𝐺+

| 𝑥𝑥Gt, 𝑥𝑥>/^ ⋯

	
  	
  

𝐺𝐺+
| 𝑥𝑥G_, 𝑥𝑥>/t

𝐺𝐺+
| 𝑥𝑥G^, 𝑥𝑥>/t

⋮
𝐺𝐺+
| 𝑥𝑥Gt, 𝑥𝑥>/t

	
  	
  

𝐺𝐺+
| 𝑥𝑥G_, 𝑥𝑥>/ t{_ 𝐺𝐺+

| 𝑥𝑥G_, 𝑥𝑥>/ t{^ ⋯
𝐺𝐺+
| 𝑥𝑥G^, 𝑥𝑥>/ t{_ 𝐺𝐺+

| 𝑥𝑥G^, 𝑥𝑥>/ t{^ ⋯
⋮ ⋮ ⋮

𝐺𝐺+
| 𝑥𝑥Gt, 𝑥𝑥>/ t{_ 𝐺𝐺+

| 𝑥𝑥Gt, 𝑥𝑥>/ t{^ ⋯

	
  	
  

𝐺𝐺+
| 𝑥𝑥G_, 𝑥𝑥>/ ^t

𝐺𝐺+
| 𝑥𝑥G^, 𝑥𝑥>/ ^t

⋮
𝐺𝐺+
| 𝑥𝑥Gt, 𝑥𝑥>/ ^t L@×L@

30  

𝒛𝒛 = 𝐹𝐹>/_ 𝐹𝐹>/^	
  	
  ⋯ 𝐹𝐹>/t	
  	
  𝐹𝐹>/(t{_) 𝐹𝐹>/(t{^)	
  	
  ⋯ 𝐹𝐹>/(^t) L@×6
z

31  

𝒃𝒃 = − 𝐺𝐺+ 𝑥𝑥G_, 𝑥𝑥+3 𝐺𝐺+ 𝑥𝑥G^, 𝑥𝑥+3 	
  	
  ⋯ 𝐺𝐺+ 𝑥𝑥Gt, 𝑥𝑥+3 	
  	
  𝐺𝐺+
| 𝑥𝑥G_, 𝑥𝑥+3 𝐺𝐺+

| 𝑥𝑥G^, 𝑥𝑥+3 	
  	
  ⋯ 𝐺𝐺+
| 𝑥𝑥Gt, 𝑥𝑥+3 L@×6

z
32  

and 𝐺𝐺|(𝑥𝑥, 𝑢𝑢) is the derivative of the Green’s function with respect to 𝑥𝑥. 

where 

𝑔𝑔+ 𝑥𝑥, 𝑢𝑢 = sinh 𝑞𝑞+𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠 𝑞𝑞+𝑥𝑥 sin 𝑞𝑞+𝐿𝐿 − 𝑞𝑞+𝑢𝑢 − sin 𝑞𝑞+𝐿𝐿 sinh 𝑞𝑞+𝑥𝑥 sinh 𝑞𝑞+𝐿𝐿 − 𝑞𝑞+𝑢𝑢 (21) 

and 𝑔𝑔+(𝑢𝑢, 𝑥𝑥) is obtained by replacing 𝑥𝑥 with 𝑢𝑢 in Equation (21). 

 

ENFORCING NODE(S) AND FIXED NODE(S) 

One Node 

The derivations for the analytical solution of the applied control force that results in creating a point, at location 
𝑥𝑥G, on a beam having zero deflection, called a node, is presented in this section. First, the deflection at location 𝑥𝑥G 
is defined using Equation (17) to obtain 

𝑊𝑊+ 𝑥𝑥G =
1

1 + 𝑗𝑗𝜔𝜔+𝑐𝑐L
𝐺𝐺+ 𝑥𝑥G, 𝑥𝑥+3 + 𝐹𝐹>/_𝐺𝐺+ 𝑥𝑥G, 𝑥𝑥>/_ 22  

To create a stationary point at location 𝑥𝑥G on the beam, we set the righthand side of Equation (22) to zero, to 
give 

 
𝐺𝐺+ 𝑥𝑥G, 𝑥𝑥+3 + 𝐹𝐹>/_𝐺𝐺+ 𝑥𝑥G, 𝑥𝑥>/_ = 0 23  

Solving Equation (23) for the amplitude of the control force results in 

𝐹𝐹>/_ = −
𝐺𝐺+ 𝑥𝑥G, 𝑥𝑥+3
𝐺𝐺+ 𝑥𝑥G, 𝑥𝑥>/_

24  

As seen in Equation (24), the calculation of the amplitude of the 𝑖𝑖10; applied control force to create a stationary 
point (or node) on the beam that is vibrating as a result of the application of the excitation force having amplitude 𝐹𝐹+ 
and frequency 𝜔𝜔+ is very simple, exact, and straightforward. Next, the calculations for the amplitudes of the other 
excitation forces to create a stationary point on the same location are performed separately. Finally, the steady-state 
deflection 𝑊𝑊+(𝑥𝑥) can be calculated using Equation (17) and the total response is obtained using Equation (9). 
 

Multiple Nodes 

In this section, we outline the numerical procedure for calculating the amplitudes of the applied control forces 
with the objective of creating 𝑟𝑟 nodes on the beam. In general, each node requires one control force to be designed 
and applied to the beam. Substituting 𝑥𝑥 = 𝑥𝑥G_, 𝑥𝑥G^, … , 𝑥𝑥Gt  in Equation (17) results in 𝑟𝑟  simultaneous linear 
algebraic equations in 𝑟𝑟 unknowns. The unknowns are the steady-state amplitudes for the applied control forces, 
i.e., 𝐹𝐹>/_, 𝐹𝐹>/^, … , 𝐹𝐹>/t responsible for generating 𝑟𝑟 nodes. The resulting 𝑟𝑟 equations are given, in matrix form, by 

 
𝑨𝑨𝑨𝑨 = 𝒃𝒃 25  

where 
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After calculating the amplitudes of the control forces, the steady-state deflection can be calculated using 
Equation (17) and then the total steady-state response is obtained using Equation (9). 

 

CONTROL FORCE REALIZATION 

The designed control force can be realized using passive elements such a spring connected between a point on 
the beam and ground or an oscillator containing a spring and a mass attached to the beam as seen in Figure 2. It 
should be noted that the required number of passive elements matches the number of applied control forces needed 
to impose the 𝒓𝒓 nodes. At this stage, it is assumed that the applied control forces have been calculated using the 
numerical procedure outlined in Section 4. 

 

 
Figure 2. Configuration of a harmonically excited elastic beam with attached passive elements. 

 
If the spring element is used, then the value of the stiffness can be calculated by equating the spring reaction 

force exerted on the beam with the magnitude of the applied control force: 
𝑭𝑭𝒂𝒂𝒊𝒊𝒊𝒊 = 𝒌𝒌𝒂𝒂𝒊𝒊𝒊𝒊𝑾𝑾 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 𝟑𝟑𝟑𝟑  

and, therefore, the spring stiffness value can be calculated by 

𝒌𝒌𝒂𝒂𝒊𝒊𝒊𝒊 =
𝑭𝑭𝒂𝒂𝒊𝒊𝒊𝒊

𝑾𝑾 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊
𝟑𝟑𝟑𝟑  

where the beam deflection amplitude at 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 can be calculated using Equation (17) by substituting 𝒙𝒙 = 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊. 
It is worth noting that when the applied control force location matches the node location (collocated case), then the 
denominator of Equation (34) becomes zero resulting in a value of infinity for the stiffness. Physically, this case can 
be achieved by rigidly attaching the beam to the ground. Alternatively, to obtain a finite value for the spring stiffness, 
the spring attachment location should not coincide with the node location (noncollocated case). 

 
If an oscillator with mass and spring is attached to the beam at location 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊, then the values of the mass and 

spring stiffness can be calculated as follows (Foda and Alsaif 2009). In this case, the equation of motion for the 
oscillator dynamics is given by 

 
𝒎𝒎𝒂𝒂𝒊𝒊𝒊𝒊𝒚𝒚 𝒕𝒕 + 𝒌𝒌𝒂𝒂𝒊𝒊𝒊𝒊 𝒚𝒚 𝒕𝒕 − 𝒘𝒘 𝒙𝒙𝒂𝒂𝒊𝒊𝟐𝟐, 𝒕𝒕 = 𝟎𝟎 𝟑𝟑𝟑𝟑  

where 𝒚𝒚(𝒕𝒕) is the absolute displacement of the oscillator mass 𝒎𝒎𝒂𝒂𝒊𝒊𝒊𝒊. Since the system is linear, the response 𝒚𝒚(𝒕𝒕) 

takes the form 

𝑥𝑥>/^ 	
  

	
  

𝑘𝑘>/_ 	
  𝑘𝑘>/^ 	
  

𝑥𝑥>/_ 	
  

𝑚𝑚>/^	
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𝒚𝒚 𝒕𝒕 = 𝒀𝒀𝒆𝒆𝒋𝒋𝝎𝝎𝒊𝒊𝒕𝒕 𝟑𝟑𝟑𝟑  

where 𝒀𝒀 is the amplitude of the oscillator displacement. The reaction force exerted by the oscillator on the 
beam is given by 

 
𝑭𝑭𝒂𝒂𝒊𝒊𝒊𝒊 = 𝒌𝒌𝒂𝒂𝒊𝒊𝒊𝒊 𝑾𝑾 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 − 𝒀𝒀 𝟑𝟑𝟑𝟑  

From Equations (35), (36), and (37), it can be easily shown that the reaction force exerted by the oscillator on 
the beam can be written as 

 
𝑭𝑭𝒂𝒂𝒊𝒊𝒊𝒊 = 𝜶𝜶𝒂𝒂𝒊𝒊𝒊𝒊 𝝎𝝎𝒊𝒊 𝑾𝑾 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 𝟑𝟑𝟑𝟑  

 
where 𝜶𝜶𝒂𝒂𝒊𝒊𝒊𝒊 is the control force gain that is given by 
 

𝜶𝜶𝒂𝒂𝒊𝒊𝒊𝒊 𝝎𝝎𝒊𝒊 =
𝒎𝒎𝒂𝒂𝒊𝒊𝒊𝒊𝝎𝝎𝒊𝒊

𝟐𝟐𝒌𝒌𝒂𝒂𝒊𝒊𝒊𝒊
𝒌𝒌𝒂𝒂𝒊𝒊𝒊𝒊 − 𝒎𝒎𝒂𝒂𝒊𝒊𝒊𝒊𝝎𝝎𝒊𝒊

𝟐𝟐 =
𝝎𝝎𝒊𝒊

𝟐𝟐𝒌𝒌𝒂𝒂𝒊𝒊𝒊𝒊
𝝎𝝎𝒂𝒂

𝟐𝟐 − 𝝎𝝎𝒊𝒊
𝟐𝟐 𝟑𝟑𝟑𝟑  

where 𝝎𝝎𝒂𝒂 is the natural frequency of the oscillator, in rad/s, and is given by 
 

𝝎𝝎𝒂𝒂 =
𝒌𝒌𝒂𝒂𝒊𝒊𝒊𝒊
𝒎𝒎𝒂𝒂𝒊𝒊𝒊𝒊

𝟒𝟒𝟒𝟒  

It is to be noted that the applied control force gain in Equation (39) can be calculated after calculating the control 
force as well as the amplitude of the beam deflection at 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 based on the procedures in Section 4. 

 
When the node location (𝒙𝒙𝒏𝒏) coincide with the oscillator location (𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊), then the control force gain in Equation 

(38) approaches infinity. In this case, the natural frequency of the oscillator becomes equal to the excitation frequency, 
as seen in Equation (39), and the values of oscillator mass and oscillator stiffness can be calculated from 

 
𝒌𝒌𝒂𝒂𝒊𝒊𝒊𝒊
𝒎𝒎𝒂𝒂𝒊𝒊𝒊𝒊

= 𝝎𝝎𝒊𝒊
𝟐𝟐 𝟒𝟒𝟒𝟒   

where either the oscillator stiffness is calculated for a given value of oscillator mass or vice versa. This freedom 
in the selection of the oscillator parameters can be used to select the values that results in minimizing the oscillator 
vibrational amplitude. 

For the noncollocated case, the control force gain has a finite value and Equation (39) can be used to calculate 
the oscillator mass for a given stiffness or vice versa. 

 

SIMULATIONS AND DISCUSSIONS 

In this section, numerical experiments are performed using the procedure outlined in the previous sections to 
create nodes and fixed nodes in a vibrating beam. The outlined numerical methods are applied on simply supported 
and cantilever beams, although the method is applicable to beams having any end supports. 

 
It is to be noted that all the parameters and variables used in the following examples are dimensionless, which 

are defined in Equations (12) to (14). These parameters can be easily transformed to their dimensional counterpart 

After calculating the amplitudes of the control forces, the steady-state deflection can be calculated using 
Equation (17) and then the total steady-state response is obtained using Equation (9). 

 

CONTROL FORCE REALIZATION 

The designed control force can be realized using passive elements such a spring connected between a point on 
the beam and ground or an oscillator containing a spring and a mass attached to the beam as seen in Figure 2. It 
should be noted that the required number of passive elements matches the number of applied control forces needed 
to impose the 𝒓𝒓 nodes. At this stage, it is assumed that the applied control forces have been calculated using the 
numerical procedure outlined in Section 4. 

 

 
Figure 2. Configuration of a harmonically excited elastic beam with attached passive elements. 

 
If the spring element is used, then the value of the stiffness can be calculated by equating the spring reaction 

force exerted on the beam with the magnitude of the applied control force: 
𝑭𝑭𝒂𝒂𝒊𝒊𝒊𝒊 = 𝒌𝒌𝒂𝒂𝒊𝒊𝒊𝒊𝑾𝑾 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 𝟑𝟑𝟑𝟑  

and, therefore, the spring stiffness value can be calculated by 

𝒌𝒌𝒂𝒂𝒊𝒊𝒊𝒊 =
𝑭𝑭𝒂𝒂𝒊𝒊𝒊𝒊

𝑾𝑾 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊
𝟑𝟑𝟑𝟑  

where the beam deflection amplitude at 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 can be calculated using Equation (17) by substituting 𝒙𝒙 = 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊. 
It is worth noting that when the applied control force location matches the node location (collocated case), then the 
denominator of Equation (34) becomes zero resulting in a value of infinity for the stiffness. Physically, this case can 
be achieved by rigidly attaching the beam to the ground. Alternatively, to obtain a finite value for the spring stiffness, 
the spring attachment location should not coincide with the node location (noncollocated case). 

 
If an oscillator with mass and spring is attached to the beam at location 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊, then the values of the mass and 

spring stiffness can be calculated as follows (Foda and Alsaif 2009). In this case, the equation of motion for the 
oscillator dynamics is given by 

 
𝒎𝒎𝒂𝒂𝒊𝒊𝒊𝒊𝒚𝒚 𝒕𝒕 + 𝒌𝒌𝒂𝒂𝒊𝒊𝒊𝒊 𝒚𝒚 𝒕𝒕 − 𝒘𝒘 𝒙𝒙𝒂𝒂𝒊𝒊𝟐𝟐, 𝒕𝒕 = 𝟎𝟎 𝟑𝟑𝟑𝟑  

where 𝒚𝒚(𝒕𝒕) is the absolute displacement of the oscillator mass 𝒎𝒎𝒂𝒂𝒊𝒊𝒊𝒊. Since the system is linear, the response 𝒚𝒚(𝒕𝒕) 

takes the form 

𝑥𝑥>/^ 	
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once all the parameters of the beam structure are defined. Consequently, all the parameters stated in the following 
examples are shown without dimensions 
 

Collocated Case: Undamped Simply Supported Beam with One Node and Fixed Node 
and Two Frequencies 

First, we consider applying the numerical procedure outlined in the previous sections on a uniform simply 
supported beam and a uniform cantilever beam. For a uniform undamped simply supported beam, we consider the 
example reported by Cha and Ren (2006) of length 𝐿𝐿 = 1, excited by two concentrated harmonic forces of amplitude 
𝐹𝐹O = 1, excitation frequencies 𝜔𝜔6 = 17 and 𝜔𝜔L = 43, and excitation location 𝑥𝑥63 = 𝑥𝑥L3 = 0.27. It is desired to 
impose a node at the location 𝑥𝑥G = 0.65 using one collocated control force for each excitation frequency, i.e., 
𝑥𝑥>__ = 𝑥𝑥>^_ = 0.65. For comparison, a fixed node is also designed for the same beam system using two control 
forces for each excitation frequency, one force applied at 𝑥𝑥>/_ = 0.65 and the other one applied at 𝑥𝑥>/^ = 0.25. 
The calculated applied control forces amplitudes and oscillators parameters are shown in Table 1. The resulting 
steady-state deflections of the beam for the uncontrolled case (red dashed line), one node case (orange dash-dotted 
line), and fixed node case (blue solid line) are shown in Figure 3. As seen in the figure, a node at exactly 𝑥𝑥G = 0.65 
is created for both deflections resulting from the two excitation forces. Furthermore, the vibrations have been 
diminished over the complete beam span when a fixed node is enforced compared with the node case for both 
excitation frequencies. It is noted that Cha and Ren (2006) have used the assumed modes method to solve the same 
problem. They have used the Matlab routine fsolve to solve highly nonlinear simultaneous equations that requires 
initial guesses for the unknowns to obtain comparable results. 

 
Table 1. Calculated control forces magnitudes and oscillators parameters. 

 

Case Excitation 
Frequency (𝛚𝛚) 

Oscillator 
Location (𝒙𝒙𝒂𝒂𝒊𝒊) 

Chosen 
Stiffness Mass Applied Control Force 

Amplitude 

One Node 

17 0.65 5 1.73010
×10úL −1.15671 

43 0.65 5 2.70416
×10úe 8.94739×10ú6 

One Fixed 
Node 

17 

0.65 5 1.73010
×10úL −1.18303×10úL 

0.25 5 1.72906
×10úL −1.03984 

43 

0.65 5 2.70416
×10úe −1.10415×10úL 

0.25 5 2.70249
×10úe −9.92397×10ú6 
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Figure 3. The steady state deflection for the uncontrolled case (red dashed line), one node case (orange dash-
dotted line), and fixed node case (blue solid line) of an undamped simply supported beam when ω1=17, ω2=43 , 
𝒙𝒙𝒊𝒊𝒊𝒊=0.27, 𝒙𝒙𝒏𝒏=0.65, 𝒙𝒙𝒂𝒂𝟏𝟏𝟏𝟏 = 𝒙𝒙𝒂𝒂𝟐𝟐𝟏𝟏 = 𝟎𝟎. 𝟔𝟔𝟔𝟔 for the node case, and 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 = 𝟎𝟎. 𝟔𝟔𝟔𝟔 and 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 = 𝟎𝟎. 𝟐𝟐𝟐𝟐 for the fixed 

node case. 
 

Collocated Case: Undamped Cantilever Beam with One Node and Fixed Node and Two 
Frequencies 

 Next, it is desired to apply the outlined numerical procedure on a cantilever beam. This example is reported by 
Cha and Ren (2006), in which, an undamped beam is subjected to excitation forces at 𝑥𝑥63 = 𝑥𝑥L3 = 0.85 with two 
frequencies 𝜔𝜔6 = 12 and 𝜔𝜔L = 31. A node and fixed node is desired at 𝑥𝑥G = 1 using two collocated control 
forces for the node case (i.e., 𝑥𝑥>__ = 𝑥𝑥>^_ = 1) and four control forces applied at 𝑥𝑥>/_ = 1 and 𝑥𝑥>/^ = 0.84 for 
the fixed node case. The calculated applied control forces amplitudes and oscillators parameters are shown in Table 
2. The resulting steady-state deflections of the beam for the uncontrolled case (red dashed line), one node case (orange 
dash-dotted line), and fixed node case (blue solid line) are shown in Figure 4. As seen in this figure, a node is created 
at the tip of the beam without using any rigid support. In addition, enforcing a zero slope at the node location has 
reduced the vibration amplitudes over the total beam length. 

 
Table 2. Calculated control forces magnitudes and oscillators parameters. 

 

Case Excitation 
Frequency (𝛚𝛚) 

Oscillator 
Location (𝒙𝒙𝒂𝒂𝒊𝒊) 

Chosen 
Stiffness Mass Applied Control Force 

Amplitude 

One Node 
12 1 7 4.86111

×10úL −1.23135 

31 1 7 7.28408
×10úe −5.77891×10ú6 

once all the parameters of the beam structure are defined. Consequently, all the parameters stated in the following 
examples are shown without dimensions 
 

Collocated Case: Undamped Simply Supported Beam with One Node and Fixed Node 
and Two Frequencies 

First, we consider applying the numerical procedure outlined in the previous sections on a uniform simply 
supported beam and a uniform cantilever beam. For a uniform undamped simply supported beam, we consider the 
example reported by Cha and Ren (2006) of length 𝐿𝐿 = 1, excited by two concentrated harmonic forces of amplitude 
𝐹𝐹O = 1, excitation frequencies 𝜔𝜔6 = 17 and 𝜔𝜔L = 43, and excitation location 𝑥𝑥63 = 𝑥𝑥L3 = 0.27. It is desired to 
impose a node at the location 𝑥𝑥G = 0.65 using one collocated control force for each excitation frequency, i.e., 
𝑥𝑥>__ = 𝑥𝑥>^_ = 0.65. For comparison, a fixed node is also designed for the same beam system using two control 
forces for each excitation frequency, one force applied at 𝑥𝑥>/_ = 0.65 and the other one applied at 𝑥𝑥>/^ = 0.25. 
The calculated applied control forces amplitudes and oscillators parameters are shown in Table 1. The resulting 
steady-state deflections of the beam for the uncontrolled case (red dashed line), one node case (orange dash-dotted 
line), and fixed node case (blue solid line) are shown in Figure 3. As seen in the figure, a node at exactly 𝑥𝑥G = 0.65 
is created for both deflections resulting from the two excitation forces. Furthermore, the vibrations have been 
diminished over the complete beam span when a fixed node is enforced compared with the node case for both 
excitation frequencies. It is noted that Cha and Ren (2006) have used the assumed modes method to solve the same 
problem. They have used the Matlab routine fsolve to solve highly nonlinear simultaneous equations that requires 
initial guesses for the unknowns to obtain comparable results. 

 
Table 1. Calculated control forces magnitudes and oscillators parameters. 

 

Case Excitation 
Frequency (𝛚𝛚) 

Oscillator 
Location (𝒙𝒙𝒂𝒂𝒊𝒊) 

Chosen 
Stiffness Mass Applied Control Force 

Amplitude 

One Node 

17 0.65 5 1.73010
×10úL −1.15671 

43 0.65 5 2.70416
×10úe 8.94739×10ú6 

One Fixed 
Node 

17 

0.65 5 1.73010
×10úL −1.18303×10úL 

0.25 5 1.72906
×10úL −1.03984 

43 

0.65 5 2.70416
×10úe −1.10415×10úL 

0.25 5 2.70249
×10úe −9.92397×10ú6 
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One Fixed 
Node 

12 
1 7 4.86111

×10úL −4.83192×10úL 

0.84 7 4.85994
×10úL −9.52000×10ú6 

31 
1 7 7.28408

×10úe 3.28769×10úe 

0.84 7 7.28419
×10úe −1.06413 

 

Figure. 4. The steady state deflection for the uncontrolled case (red dashed line), one node case (orange dash-
dotted line), and fixed node case (blue solid line) of an undamped cantilever beam when ω1=12, ω2=31 , 

𝒙𝒙𝒊𝒊𝒊𝒊=0.85, 𝒙𝒙𝒏𝒏=1, 𝒙𝒙𝒂𝒂𝟏𝟏𝟏𝟏 = 𝒙𝒙𝒂𝒂𝟐𝟐𝟐𝟐 = 𝟏𝟏 for the node case, and 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 = 𝟏𝟏 and 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 = 𝟎𝟎. 𝟖𝟖𝟖𝟖 for the fixed node case. 
 

 

Noncollocated Case: Damped Simply Supported Beam with Fixed Node and Two 
Frequencies 

Figure 5 depicts the steady-state deflections for a damped simply supported beam subjected to two harmonic 
force excitations with frequencies 𝜔𝜔6 = 50 and 𝜔𝜔L = 100 that act at 𝑥𝑥+3 = 0.8. The damping coefficients are 
𝑐𝑐6 = 0.1 and 𝑐𝑐L = 0.001. Based on a certain application, it is desired to apply the outlined numerical procedure to 
impose a fixed node at 𝑥𝑥G = 0.3 using two control forces acting at 𝑥𝑥>/_ = 0.6 and 𝑥𝑥>/^ = 0.75. The calculated 
applied control forces amplitudes and oscillators parameters are shown in Table 3. The resulting steady-state 
deflections of the beam for the uncontrolled case (red dashed line) and fixed node case (blue solid line) are shown in 
Figure 4. Not only zero deflection and zero slope is achieved at the node location for both excitation forces but also 
the beam vibrations are diminished in the range 0 ≤ 𝑥𝑥 ≤ 0.7. 
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Table 3. Calculated control forces magnitudes and oscillators parameters. 
 

Case Excitation 
Frequency (𝛚𝛚) 

Oscillator 
Location (𝒙𝒙𝒂𝒂𝒊𝒊) 

Chosen 
Stiffness Mass Applied Control Force 

Amplitude 

One Fixed 
Node 

50 

0.6 5 2×10úe 1.23247×10ú6 

0.75 5 2.00066
×10úe −1.04578 

100 

0.6 5 5×10ú\ 1.582788×10ú6 

0.75 5 5.00170
×10ú\ −1.31056 

 

 

Figure 5. The steady state deflections for the uncontrolled case (red dashed line) and fixed node case (blue solid 
line) of a damped simply supported beam when ω1=12, ω2=31 , c1=0.1, c2=0.001, 𝒙𝒙𝒊𝒊𝒊𝒊=0.8, 𝒙𝒙𝒏𝒏=0.3, 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 = 𝟎𝟎. 𝟔𝟔 

and 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 = 𝟎𝟎. 𝟕𝟕𝟕𝟕 
 

One Fixed 
Node 

12 
1 7 4.86111

×10úL −4.83192×10úL 

0.84 7 4.85994
×10úL −9.52000×10ú6 

31 
1 7 7.28408

×10úe 3.28769×10úe 

0.84 7 7.28419
×10úe −1.06413 

 

Figure. 4. The steady state deflection for the uncontrolled case (red dashed line), one node case (orange dash-
dotted line), and fixed node case (blue solid line) of an undamped cantilever beam when ω1=12, ω2=31 , 

𝒙𝒙𝒊𝒊𝒊𝒊=0.85, 𝒙𝒙𝒏𝒏=1, 𝒙𝒙𝒂𝒂𝟏𝟏𝟏𝟏 = 𝒙𝒙𝒂𝒂𝟐𝟐𝟐𝟐 = 𝟏𝟏 for the node case, and 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 = 𝟏𝟏 and 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊 = 𝟎𝟎. 𝟖𝟖𝟖𝟖 for the fixed node case. 
 

 

Noncollocated Case: Damped Simply Supported Beam with Fixed Node and Two 
Frequencies 

Figure 5 depicts the steady-state deflections for a damped simply supported beam subjected to two harmonic 
force excitations with frequencies 𝜔𝜔6 = 50 and 𝜔𝜔L = 100 that act at 𝑥𝑥+3 = 0.8. The damping coefficients are 
𝑐𝑐6 = 0.1 and 𝑐𝑐L = 0.001. Based on a certain application, it is desired to apply the outlined numerical procedure to 
impose a fixed node at 𝑥𝑥G = 0.3 using two control forces acting at 𝑥𝑥>/_ = 0.6 and 𝑥𝑥>/^ = 0.75. The calculated 
applied control forces amplitudes and oscillators parameters are shown in Table 3. The resulting steady-state 
deflections of the beam for the uncontrolled case (red dashed line) and fixed node case (blue solid line) are shown in 
Figure 4. Not only zero deflection and zero slope is achieved at the node location for both excitation forces but also 
the beam vibrations are diminished in the range 0 ≤ 𝑥𝑥 ≤ 0.7. 
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Noncollocated Case: Undamped Simply Supported Beam With Two Nodes and Two 
Frequencies 

Consider the example reported by Cha and Buyco (2015) for an undamped simply supported beam excited by 
two forces applied at 𝑥𝑥63 = 𝑥𝑥L3 = 0.4 having frequencies 𝜔𝜔6 = 80 and 𝜔𝜔L = 125. It is desired to impose two 
nodes on the beam at locations 𝑥𝑥G_ = 0.1 and 𝑥𝑥G^ = 0.6 using two control forces for each excitation frequency 
applied at 𝑥𝑥>/_ = 0.3 and 𝑥𝑥>/^ = 0.45. The calculated applied control forces amplitudes and oscillators parameters 
are shown in Table 4. The resulting steady-state deflections of the beam for the uncontrolled case (red dashed line) 
and two nodes case (blue solid line) are shown in Figure 6. As seen in this figure, the two nodes are created at exactly 
the desired location. In addition, the vibrational amplitudes have been weakened along the complete beam span. 

 
Table 4. Calculated control forces magnitudes and oscillators parameters. 
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Figure. 6. The steady state deflections for the uncontrolled case (red dashed line) and two nodes case  

(blue solid line) of an undamped simply supported beam when ω1=80, ω2=125 , 𝒙𝒙𝒊𝒊𝒊𝒊=0.4, 
 𝒙𝒙𝒏𝒏𝟏𝟏=0.1, 𝒙𝒙𝒏𝒏𝟐𝟐=0.6, 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊=0.3, and 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊=0.45. 
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Noncollocated Case: Undamped Cantilever Beam with Three Nodes and Three 
Frequencies 

Consider the example reported by Cha and Buyco (2015) for an undamped cantilever beam excited by three 
forces applied at 𝑥𝑥63 = 𝑥𝑥L3 = 𝑥𝑥e3 = 0.23  having frequencies 𝜔𝜔6 = 140 , 𝜔𝜔L = 185 , and 𝜔𝜔e = 230 . It is 
required to impose three nodes on the beam at locations 𝑥𝑥G6 = 0.05, 𝑥𝑥G^ = 0.5 and 𝑥𝑥Ge = 0.8 using three control 
forces for each excitation frequency applied at 𝑥𝑥>/_ = 0.2, 𝑥𝑥>/^ = 0.25, and 𝑥𝑥>/û = 0.3. The calculated applied 
control forces amplitudes and oscillators parameters are shown in Table 5. The resulting steady-state deflections of 
the beam for the uncontrolled case (red dashed line) and three nodes case (blue solid line) are shown in Figure 7. As 
seen in this figure, the vibrations have been cancelled not only at the three node locations but rather on the complete 
length of the beam. 

 
Table 5. Calculated control forces magnitudes and oscillators parameters. 

 

Case Excitation 
Frequency (𝛚𝛚) 

Oscillator 
Location (𝒙𝒙𝒂𝒂𝒊𝒊) 

Chosen 
Stiffness Mass Applied Control Force 

Amplitude 

Three 
Nodes 

140 

0.20 34.74 1.77309
×10úe −3.33349×10ú6 

0.25 74.21 3.78691
×10úe −7.66362×10ú6 

0.30 7.297 3.72296
×10ú\ 8.93060×10úL 

185 

0.20 36.01 1.05254
×10úe −3.38278×10ú6 

0.25 73.10 2.13624
×10úe −7.65888×10ú6 

0.30 6.477 1.89248
×10ú\ 8.87965×10úL 

230 

0.20 36.50 6.90225
×10ú\ −3.44292×10ú6 

0.25 73.36 1.38701
×10úe −7.65418×10ú6 

0.30 6.512 1.23100
×10ú\ 8.81902×10úL 

Noncollocated Case: Undamped Simply Supported Beam With Two Nodes and Two 
Frequencies 

Consider the example reported by Cha and Buyco (2015) for an undamped simply supported beam excited by 
two forces applied at 𝑥𝑥63 = 𝑥𝑥L3 = 0.4 having frequencies 𝜔𝜔6 = 80 and 𝜔𝜔L = 125. It is desired to impose two 
nodes on the beam at locations 𝑥𝑥G_ = 0.1 and 𝑥𝑥G^ = 0.6 using two control forces for each excitation frequency 
applied at 𝑥𝑥>/_ = 0.3 and 𝑥𝑥>/^ = 0.45. The calculated applied control forces amplitudes and oscillators parameters 
are shown in Table 4. The resulting steady-state deflections of the beam for the uncontrolled case (red dashed line) 
and two nodes case (blue solid line) are shown in Figure 6. As seen in this figure, the two nodes are created at exactly 
the desired location. In addition, the vibrational amplitudes have been weakened along the complete beam span. 
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Figure. 6. The steady state deflections for the uncontrolled case (red dashed line) and two nodes case  

(blue solid line) of an undamped simply supported beam when ω1=80, ω2=125 , 𝒙𝒙𝒊𝒊𝒊𝒊=0.4, 
 𝒙𝒙𝒏𝒏𝟏𝟏=0.1, 𝒙𝒙𝒏𝒏𝟐𝟐=0.6, 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊=0.3, and 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊=0.45. 
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Figure 7. The steady state deflections for the uncontrolled case (red dashed line) and three nodes case (blue solid 
line) of an undamped cantilever beam when ω1=140, ω2=185, ω3=230, 𝒙𝒙𝒊𝒊𝒊𝒊=0.23, 𝒙𝒙𝒏𝒏𝟏𝟏=0.05, 𝒙𝒙𝒏𝒏𝟐𝟐=0.5, 

𝒙𝒙𝒏𝒏𝟑𝟑=0.8, 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊=0.2, 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊=0.25,  
and 𝒙𝒙𝒂𝒂𝒊𝒊𝒊𝒊=0.3. 

 

CONCLUSION 

In this paper, Green’s function is utilized to develop an exact analytical solution for the control forces required 
to impose points with zero deflection, called a node, and zero slope, called a fixed node, on a beam structure excited 
by disturbances having multiple frequencies. The designed control forces can be realized using oscillators having 
passive elements, such as springs and masses, attached to the beam. The principle of superposition allows the 
numerical procedure to be applied for each excitation force independently, which greatly simplifies the computations 
for the designed control forces. In general, each node requires a control force to be applied at specified location on a 
beam, whereas a fixed node requires two control forces. The resulting equations for the control forces are linear 
algebraic equations, which can be solved using Gauss elimination. The oscillators’ parameters can be calculated after 
calculating the required control forces magnitudes with a freedom to properly select the value of one parameter and 
then compute the other one. This freedom in selecting the oscillators parameters can be used to choose the parameters 
that minimizes a certain objective function. The numerical procedure is suitable to perform parametric study of any 
one of the beam structure parameters, such as the oscillator location, oscillator mass, or oscillator spring to investigate 
its effect on the beam deflection. The validity of the numerical technique is demonstrated by several numerical 
examples with different cases, which proves that the method can control and reduce the vibrations not only at the 
desired points, but also along regions, and may be the complete beam span.  
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that minimizes a certain objective function. The numerical procedure is suitable to perform parametric study of any 
one of the beam structure parameters, such as the oscillator location, oscillator mass, or oscillator spring to investigate 
its effect on the beam deflection. The validity of the numerical technique is demonstrated by several numerical 
examples with different cases, which proves that the method can control and reduce the vibrations not only at the 
desired points, but also along regions, and may be the complete beam span.  

 

 

 


