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ABSTRACT
Nowadays, manufacturers give importance to the production of machines that allow for faster production, 

reduce labor costs, and minimize operation errors to meet the increasing demand. The search for such machines 
leads the manufacturing sector to automation.  In this study, an automation-supported tapping machine prototype was 
manufactured. Kinematic equations were used for determining the location of the end effector in Cartesian space, 
whereas inverse kinematic equations were used for angular positions in joint space relative to positions in Cartesian 
space. Based on the results of the kinematic equations, the data obtained in certain positions were taught to the system 
through ANN. The position values for the angles known through the artificial intelligence algorithm were taught to the 
system. Then, the position coordinates to be reached by this manipulator, which has four degrees of freedom, for the 
intermediate position coordinate values through artificial neural networks (ANN) have been obtained. It is expected 
that the device controlled by artificial intelligence will not be affected by the variables in parameter or force changes 
requiring high working performance. With the control of the positions through ANN, it has been ensured that the 
position control of the tapping robot manipulator is predicted based on artificial intelligence techniques depending 
on the angle values of the limbs, and the robot is prevented from going to a position that is on a different trajectory. 
Accordingly, the robot arm has been made controllable with ANN techniques. With ANN modelling, the position 
of the end point to perform the tapping process was estimated with high reliability. For future research, a rough 
simulation was made to see whether the end point would go to a different position in space.
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INTRODUCTION
Tapping is a process that is actively used in opening screws in holes (Bhowmick et al., 2010). Having more 

than one cutter and threads in the desired forms around them are the characteristic features of taps. Cutters may be 
cylindrical or conical (Bhowmick et al., 2010).  According to the Turkish Standards Institution (TSE), a tap is defined 
as a cutter with screw threads on it that is used for cutting screws in holes that are drilled in materials such as metal and 
plastics via drilling bits or are brought to a specific point through turning (Avuncan, 1998; Uzun & Korkut, 2012).

Tapping, in which the screw is cut by combining the tool’s rotational and advancing movements, is basically the 
performance of drilling operations. It can be performed by different methods. Some of these methods are drilling 
machines, machining centers, lathe centers equipped with rotary heads, conventional turning, and manual something 
(Akkurt, 1992). Today’s developments in robotics allow the use of manipulators with automatic control in tapping.

https://doi.org/10.36909/jer.v9i3B.8807
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In the industrial sector, the need for robot manipulators has increased as a result of the development of robotized 
tasks (Baizid et al., 2016). These needs arise from the definition of the task to the implementation phase. In recent 
years, major developments have occurred in industrial automation. As a result, robotized tasks have been used and 
controlled more systematically and efficiently (Baizid et al., 2016; Brog˚ardh, 2009). This has brought about different 
quests for manipulator control. Among the control methods developed in robotics in the course of time are show and 
teach, explicit robot programming languages, task-level programming languages, and offline programming methods. 
Computer programming predominates in the modern control approach (Craig, 2005).

Control methods such as P type control, PI type control, PID control, fuzzy logic, and artificial neural networks 
are the main methods of control technology today (Hoque et al., 1995; Buja, 1993). These methods are accompanied 
by some disadvantages. Creating a mathematical model is a challenging field of engineering, and a mathematical 
modeling that is sure to be accurate is required to work with PI or PID control systems. Because of this, sometimes PI 
or PID controlled systems cannot meet the demands of high performance systems (Hoque et al., 1995).

The characteristic of artificial neural networks is a nonlinear structure between inputs and outputs. This characteristic 
of artificial neural networks ensures that they are not affected by parameter or load changes in high performance 
systems (Hoque et al., 1995). At the same time, with this structure, they can understand the approach between input 
and output with the training data and then yield the accurate output value when an input value different from such 
training data is given (Buja, 1993).

In their study, Pashkevich et al. examined artificial neural networks for a collision-free trajectory planning of 
a welding robot. The welding robot takes the irregular obstacles encountered by its units into consideration with 
the developed trajectory planning algorithm (Pashkevich et al., 2006). Zhang et al. have studied optimal trajectory 
planning using genetic algorithms in a three-dimensional working space of a mobile robot. The positions and heights 
of the obstacles are known, and the trajectory is optimized with the help of genetic algorithm (Zhang et al., 2008). 
Menasri et al. have proposed a new trajectory planning method in case of obstacles on the trajectory of a robot arm. 
In this study, the trajectory is disjointed, and the new position of the end effector is investigated in every step in 
Cartesian space to reach the final step. With the help of this technique, the position of the obstacles and the number 
of the constraints in the formulation of the problem are adapted (Menasri et al., 2015).  In Chaki et al.’s research, 
an integrated model of artificial neural networks (ANNs) and nondominated sorting genetic algorithm (NSGAII) for 
prediction and optimization of quality characteristics during pulsed Nd:YAG laser cutting of aluminum alloy (Chaki 
et al., 2015). In Chen and Mill’s research, an approach for improving the performance of industrial robots using 
multilayer feedforward neural networks is presented (Chen & Mills, 1997). In another study, integrated recurrent 
neural networks are applied as a feedforward controller for PUMA560 manipulator (Nagata & Watanabe, 2011). In 
another study, various experiments were carried out on human robot and industrial robot. These experiments validate 
the architecture (Bhat et al., 2016).

ANN method has been widely used in the scientific studies such as manufacturing processes, electronic, computer 
science, and similar other studies. ANN is an extremely useful way of modeling of experimental data modelling 
without conducting any experiments. These methods provide high reliability of predicting experimental test results 
(Aia et al., 2016; Aia et al., 2016; Sahin, 2014; Ozkan & Toktas, 2016; Ozkan, 2016; Ozkan et al., 2014; Ozkan, 2013; 
Ozkan, 2012).

Currently, manufacturers seek low-cost, fast, and productive solutions to meet the ever-growing demand. One 
of the principal concerns is reducing labor costs. The need for ensuring quality in products and standardization in 
such quality accompanies it. Meanwhile, saving time is a fundamental expectation. All these make automation more 
valuable. Thanks to automation systems, labor costs can be reduced; time can be saved; and standardization can be 
achieved in the work performed.

Tapping manipulator is a special industrial robot designed for tapping. Tapping is a necessity that arises in most 
manufacturing processes requiring assembly. Thanks to this manipulator, the tapping process has been transformed 
into a controllable form with computer support. Thus, it will allow for flexibility in system organization on integrated 
production lines.
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In this study, a manipulator that can fulfill the function of tapping has been designed and manufactured. Kinematic 
analysis has been performed for this device, and the position analysis of the end effector has been performed. Accuracy 
analysis of the position equations has been performed. Artificial intelligence algorithm has been created, and the 
known position values have been taught to the system. In this way, the system has been equipped with the ability to 
make validations for unknown intermediate positions.

ROBOTAPP MECHANICAL DESIGN FEATURES
The tapping machine has three degrees of freedom up to the wrist. In addition to this design’s wrist, a servo motor 

and a hydraulic motor have been added. Thus, two more degrees of freedom were obtained. Three servo motors 
positioned from the principal axis to the wrist have been used to position the wrist and make it follow the desired 
trajectory. With the servo motor in the wrist, the axis shift of the end effector has been blocked. Thanks to the hydraulic 
motor placed on the end effector, the tap head has been made rotational.

Figure 1 shows the mechanical structure of robotapp. As can be seen in the figure, robotapp manipulator has three 
bar mechanisms in its upper arm mechanical structure. With this mechanism, the end effector is always positioned 
perpendicular to the working plane. Thus, the end effector servo motor giving the fourth degree of freedom can be 
controlled separately.

Figure 1. Tapping machine (ROBOTAPP).

In Figure 2, the joints of the mechanical structure and the angular positions and axial locations of these joints are 
seen. The end effector has been positioned through the first three joints (θ1, θ2, and θ3). With the help of the fourth 
joint (θ4), solutions for angular threading problems are provided.

Figure 2. Positioning, rotation angles, and parametric measurements of the axes for the tapping machine.
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ROBOTAPP KINEMATIC POSITION ANALYSIS
Denavit–Hartenberg principle has been used for kinematic analysis. There are separate vector representations 

for each axis, and the matrices are defined for each vector representation. Table 1 shows the table of the Denavit–
Hartenberg parameters defined for the tapping machine (Malek & Othman, 1999).  Transformation matrices have been 
formed based on this table. The fixed parameters of the chart have been used in the operations as l2=571.34 mm and 
l3=649.97 mm.

Table 1. The Denavit–Hartenberg parameters for the tapping machine (Malek & Othman, 1999).

Axis αi-1 ai-1 di θi

1 π/2 0 0 θ1

2 0 l2 0 θ2

3 0 l3 0 θ3

4 0 0 0 θ4

                                                      

(1)

When the transformation matrices 1, 2, and 3 are written in their places in the equation 1, matrix components 
2, 3, and 4 emerge (Balkan, T., et. all, 2000). Here, Px, Py, and Pz represent the position of the end effector, while 
r11,r12,r13,….,r33 represent the rotation matrix components.

                                        (2)

                                        (3)

                                           (4)

Position-dependent angle equations for the tapping machine have been obtained using the inverse kinematic 
method. Equation 5 presents the transformation matrix existing between the basic joint and the axis where the end 
effector is located. This matrix is shown here symbolically, but it actually represents numerical values. It is required 
to represent the variables in numerical values using Equation 5-7 (Chikhaoui, et al., 2016).

                                                                           

(5)

The matrix in Equation 5 can also be written in the format seen in equation 6 (Chikhaoui et al., 2016).

                                                                                                (6)
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                                                                          (7)

Using equation 7, equations θ1, θ2, and θ3 have been obtained as follows using Equations 8–14 (Siciliano et al., 
2009):

                                                                                (8)

                                                                                        (9)

                                                                                            (10)

                                                                                       (11)

                                                                            (12)

                                                                            
(13)

                                                                                       (14)

In the tapping machine, θ4 has been externally controlled. For this reason, θ4 has not been included in the calculations. 
Three-bar mechanism applied in the design of the tapping machine ensures that the end effector is perpendicular to the 
floor for each angle value of the lower limbs of the system. Therefore, input angles (θi) must be externally provided to 
the end effector for special cases, that is angular operations, with the help of the fourth servo motor.

Tapping machine is a mechanical system with an automation direction. The angular position equations are obtained 
through solution of equation 7 (in page 7,8) as equation 8,9,10,11,12,13,14.  There are angular positions, where 
equation 7’s solutions reach infinite values. These positions are called singular points and are determined by singular 
point analysis (Craig, 2005). There is a method to follow for avoiding these points. If the determinant of the Jacobian 
matrix is equal to zero, singularity emerges. The solution of this equation gives information to the designer about the 
points to be avoided (Hijazi, et al., 2016) [29].

           (15)

                                                                 (16)

The following results have been obtained by equalizing the determinant to zero in order to avoid the singular point:

Since l2 and l3 can never be zero, either of the following has to be true here: s3=0 or l_2 c2+l_3 c23=0. Considering 
these principles, θ3=0 and θ3=π must not occur. In addition, Px=Py=0 values must be avoided. The geometry of the 
manipulator does not allow this, either.

There are angle values that should not be reached technically. These values have completely been determined by 
the geometric properties of the manipulator. The working ranges of θ2 and θ3 based on geometric constraints are as 
follows:

θ2=0  ̴  89o  ve  θ3= -90o  ̴  -160o                           (17)
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MODELLING THE POSITION OF THE ROBOT MANIPULATOR WITH ANN
Neural networks consist of neurons. Their shape and size may vary depending on the function they are to fulfill. 

Understanding the way, a neuron works helps to build ANN. ANN can be seen as a black box containing sets of 
hierarchical neurons that produce output in return for certain input values. Each processor in ANN includes collecting 
and processing the data and sending the results to the related component. The whole process within the ANN structure 
can be examined in terms of inputs, weights, sum function, and activation function. According to Figure 3, the things 
to consider are as follows:

Inputs (I)

Weights (w)

Sum function (Σ)

Transfer (activation) function (f)

Outputs (O) (Ozkan & Toktas, 2016; Ozkan, 2016; Ozkan et al., 2014; Ozkan, 2013; Ozkan, 2012).

With the data modeled in the study, four-axis tapping robot has been modelled on Solidworks software first. These 
data have confirmed the position values of each limb with engineering approach. With this model, the positions of 
all the linkages have been collected in an excel file as a data set. A code has been prepared on Matlab software, and 
the data obtained have been subjected to a training process. In this study, tapping robot motions parameters were 
defined. This robot contains tapping tool on it.  Robot end linkage positions (x, y and z) were predicted without 
using any engineering formulae. In this regard, a dataset composed of 209 rows and 11 columns has been prepared. 
Approximately 30% of this dataset has been used for testing and 70% for network training. In this ANN model contains 
inputs and outputs. Inputs were robot linkage positions (x, y and z) and each angles of robot linkage (θi) and outputs 
were end members’ location (xn, yn and zn) ANN model was built with architecture of LM (Levenberg–Marquardt) 
algorithm and MLP (MultiLayer Perception).  

Many different model iterations were tried to determine the best ANN model (Table 2). For this aim MLP and 
RBF model were iterated. In this stage BFGS, RBFT and LM learning algorithms were also modelled in MATLAB 
ANN Tool.  MATLAB Tool is given the model performance as statistically. A code has been prepared in MATLAB 
ANN Tool. This code has ANN model and also statistical calculations for each ANN iteration.  Model results were 
also calculated in a excel file by statistically.  The best model was determined as MLP and LM training algorithm. The 
best model has been defined 4- hidden-layer (Tansig (12) – Tansig (11) – Logsig (135) – Purelin (3)) MLP and LM 
training algorithm. This code is shown Training, Test and Validation reliability for all data (Table 2). The statistical 
methods of RMSE, R2, and MEP % values have been obtained using Eq. 18-20 (Ozkan, 2016; Ozkan et al., 2014; 
Ozkan, 2013; Ozkan, 2012).

                                                                      (18)

                                                                                      (19)

                                                                              
(20)

where t is the target value, o the output, and p the number of samples.



241Gullu Akkas, Ihsan Korkut and Murat Tolga Ozkan

Table 2. ANN model iterations.
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1 MLP 6-35-3 0.997102 0.992434 0.995052 BFGS 144 SOS Tanh Logistic

2 MLP 6-45-3 0.990159 0.975714 0.985681 BFGS 194 SOS Exponential Exponential

3 MLP 6-122-3 0.997523 0.992026 0.995407 BFGS 207 SOS Logistic Exponential

4 RBF 6-4-3 0.495781 0.366679 0.627060 RBFT SOS Gaussian Identity

5 RBF 6-4-3 0.694464 0.715604 0.651308 RBFT SOS Gaussian Identity

6 RBF 6-4-3 0.710787 0.639707 0.724063 RBFT SOS Gaussian Identity

7 RBF 6-4-3 0.632107 0.583729 0.628993 RBFT SOS Gaussian Identity

8 RBF 6-4-3 0.640763 0.608003 0.664539 RBFT SOS Gaussian Identity

9 RBF 6-4-3 0.663639 0.667086 0.749902 RBFT SOS Gaussian Identity

10 MLP 6-29-3 0.993101 0.984830 0.991364 BFGS 117 SOS Exponential Logistic

11 MLP 6-4-3 0.915133 0.895702 0.942572 BFGS 71 SOS Tanh Tanh

12 RBF 6-12-3 0.831743 0.845800 0.781032 RBFT SOS Gaussian Identity

13 MLP 12-11-135-3 0.999840 0.996850 0.999270 LM SOS Exponential Logistic

In the ANN model, tansig, logsig, and purelin have been used as transfer function (f) (Eq. 21-24). Their equations 
are given below (Figure 3) (Ozkan, 2016; Ozkan et al., 2014; Ozkan, 2013; Ozkan, 2012).

NETi = Σwij · xj + wbi                                                           (21)

                                                                     (22)

                                                                               (23)

                                                                                            (24)

Figure 3. Basic ANN Model Structure (Ozkan, 2016; Ozkan, 2012).
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Table 3. The position values obtained based on the angle values, and obtained through the mathematical model 
acquired from kinematic equations.

θ1

(degree)
θ2

(degree)
θ3

(degree)
x COORDINAT

(mm)
y COORDINAT

(mm)
z COORDINAT

(mm)

30 60 -90 730.72 421.8814 172.58

30 60 -120 526.4439 303.9425 -63.2978

30 89 -120 487.0142 281.1778 239.347

30 89 -150 279.2041 161.1986 7.621804

60 0 -90 285.67 494.795 -644.43

60 0 -120 124.5625 215.7486 -558.093

60 0 -150 6.623625 11.47245 -322.215

60 60 -90 421.8814 730.72 172.58

60 60 -120 303.9425 526.4439 -63.2978

60 60 -150 142.835 247.3975 -149.635

60 60 -160 86.88295 150.4857 -139.845

60 89 -90 327.1516 566.6431 560.0061

60 89 -120 281.1778 487.0142 239.347

60 89 -150 161.1986 279.2041 7.621804

60 89 -160 109.8886 190.3326 -38.0676

The results of the comparison through regression analysis of the validated values obtained through ANN and 
the random data, some of which are randomly chosen and showed in Table 3 and 4, that have been obtained from 
engineering equations and in which the positions of the robot in Solidworks software have been tested for the positions 
x, y, and z are as follows: R2=1 for training; R2=0.99685 for test, and R2=0.99927 for validation (Table 4).

Table 4. Comparison and Regression Analysis of Experiment-ANN Data (Test).
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In the ANN model, three output values (xo, yo and zo) in return for eight inputs (θi, xi, yi, zi), the coordinate 
values in the x, y and z axes have been taught at the same time, and the ANN results have been compared with the 
experimental data. In the ANN model, tansig, logsig, and purelin functions (8+ 12 + 11 + 135 + 3) have been used 
respectively. In this model: 8 demonstrates number of inputs, 12 (tansig)+11(tansig)+135(logsig) and 3 (purelin) and 
number of outputs.  The network structure of the ANN model obtained through the Matlab program is shown in Figure 
4. The best training performance is displayed in Figure 5. Regression analysis is presented in Figure 6.

Figure 4. The network structure of the ANN model.

Figure 5. The best training performance.
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Figure 6. Regression analysis.

The graphs given in Figures 6 and 7 show the consistency of the output validations obtained as a result of the 
training of the input data through ANN. The regression analysis in Figure 6 indicates that the validation results have 
been approximated by 1. This value shows that the ANN program yields nearly one hundred percent accurate results. 
The “Training R: 1” value given here indicates to what extent the experimental data correspond to the data obtained 
from ANN. Figure 7 presents best validation, training, and test comparison. According to the figure, as the amount 
of error in the training value decreases, the validation and test abilities of ANN increase, which is consistent with 
the literature. Figure 8 presents the comparison of ANN model’s training, validation, test, and overall results.  The 
regression analysis values of the training, test, and validation values are seen. The prepared software is seen to have a 
validation power of 0.99927 and a test power of 0.99685.  The prepared software has an ability to validate the robot 
position at values extremely close to the reality. Figure 9 shows error histogram with 20 bins. The gathering of residual 
values in a specific area means that training, test, and validation values are extremely close to the reality. As these 
residual values are small values, it can be regarded as a proof that no problem will be caused in the positioning of the 
robot arm.

Figure 7. Training, validation, and test comparison.
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Figure 8. The comparison of ANN model’s training, validation, test, and overall results.

Figure 9. Error Histogram with 20 Bins.

CONCLUSION
Threaded connections are among the primary methods specifically used for industrial assembling operations. As 

can be understood from previous research carried out, tapping constitutes 22% of machining operations. Investigation 
of the systems that can perform tapping in a short period of time is important to conduct the process of opening 
threads in holes with a mechanical structure of ideal quality by saving time. Smart work assistants allow this in today’s 
technology. In the present study, a special mechanical design has been created for the tapping operation, and a smart 
work assistant prototype has been manufactured out of this mechanical structure. Tapping is a sensitive process, and it 
is required even in working conditions with variable parameters. In such cases, what is offered by ready-made control 
cards or the complicated mathematical models needed in PI and PID controllers may fail to yield accurate results. 
In the current technology, ANN method allows sensitive processes to be carried out in varying conditions with more 
accurate results. Speed and reliability are highly important in assembly lines involving serial processes. The data 
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obtained in the study have showed that ANN is an appropriate solution for the position control of the end effector. 
With ANN, the tapping machine has been taught the positions of the system for certain values. This has been a work 
complying with the logic of teaching with examples, which is the basic principle of ANN.  

In the working space, the known position coordinates of the end effector have been taught to the system, and the 
unknown coordinates have been validated. Regression analysis and comparison of ANN data are given in Table 2. The 
consistency of the outputs obtained is remarkable. The regression analysis has indicated that the ANN program has 
yielded almost one hundred percent accurate results. Determining robot arm positions with mathematical equations 
is a Labor-intense and time-consuming task. It needs to the examination of tapping robot members real positions 
(x, y and z) in space. For this aim, it was compared with mathematical equations results and ANN results. A motion 
simulation has been performed with a comparison of the values obtained from the ANN, and the position the robot is 
to head for, thereby preventing the robot from performing tapping in a wrong position. In addition to their safe use of 
in many other areas, ANN are also seen to provide a lot of advantages in identifying positions in that they determine 
the positions of robot arms in advance, perform simulation, and are cheap and less laborious.

The position of the end point was modelled with high precision depending on the linkage angels made by the 
tapping machine during the process and the sizes of its parts, without any need for engineering equations. With the 
automation-supported feature of the tapping machine, the program to be prepared by the bench programmer can 
function as a control mechanism. The use of the ANN method prevents the bench operator from writing an incorrect 
code. In this way, time has been saved, and occupational accidents and sharp object-workpiece damages have been 
reduced. The use of robot in the tapping process has brought standardization in manufacturing regardless of the 
operator’s professional knowledge and skills. The device has gained an ability to work in conditions that can be 
considered dangerous for people.
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