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ABSTRACT 

Cases on limb amputation necessitate the use of Transhumeral bionic for artificial limb rehabilitation, which is 
controlled using Electromyographic (EMG) signals from the muscles. Before the implementation of EMG control, a 
mapping between the movements of an arm to the angle formed at the corresponding joints is essential to be made. 
Most of the works in the field of Bionics use Supervised Machine Learning models, chiefly Classification, to map 
muscle flexion signals to joint actuations in the bionic arm. Ample literature is also there, which uses fuzzy logic for 
mapping. However, there are very few literatures that compare these two methods of mapping. In this article, 2 
models have been discussed regarding the mapping, and their effectiveness is compared. The first model captures 
elbow and wrist flexion and maps them to their respective angular displacements of joints using a fuzzy logic model. 
In the second model, a Pattern Recognition Artificial Neural Network (ANN) model under Supervised Machine 
Learning is incorporated to map elbow and wrist flexion to the corresponding joint angular displacement. The ANN 
is trained with elbow and wrist joint flexion values and its corresponding joint angles data, optimized, and tested in 
real-time. This model is verified by comparing the joint angles of a test person (measured using Goniometers) with 
the joint angles of Bionic models made (using a 360° protractor sheet). The second model gave the insight that 
supervised machine learning models provide an accurate mapping to the joint flexion in the field of bionics. 
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1. INTRODUCTION 

The dexterity of a human hand is attributed to the many degrees of freedom it has, which are given by different 
joint movements. Handrix: Animating a Hand [1] reveals that there are 27 degrees of freedom for a human hand. The 
complexity of a bionic arm depends on the degrees of freedom in which it can move. Upper limb dysfunctionality is 
chiefly caused by amputation [2.3], limb impairment [4], Monoplegia, and Cerebral Palsy [5]. Such cases require a 
bionic arm for artificial limb rehabilitation. Most of the current existing Bionics use electromyographic (EMG) [6,7] 
methods to detect and measure muscle signals using EMG instruments and EMG sensors. In some cases, before 
designing a bionic arm for a patient, an Osseointegration [8,9] is done, which is a mechanical connection between 
the bone (where the limb is amputated) and the bionic structure. It provides higher stability and weight-bearing 
capacity. Targeted muscle reinnervation (TMR) is used to capture signals from the muscles at the amputated limb 
end to control of the bionic arm [10,11]. It was observed that the combination of TMR and electromyography 
techniques yielded more accurate results [12,13]. A bionic arm should be capable of capturing maximum movements 
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APPENDIX 

Table A. Properties of materials used in CFD analysis and Experimentation. 
 

Copper: Steel: 

Density(ρcu) – 8978 Kg/m3 Density(ρst) – 8030 Kg/m3 

Specific heat (Cpcu) – 381 J/kg 0k Specific heat (Cpst) – 502.5 J/kg 0k 

Conductivity (kcu) – 387.6 W/m0K	
   Conductivity (kst) – 16.27 W/m0K	
  

 
Table B. Properties of hot and cold fluids used in CFD analysis and Experimentation.   

 

Water Tube side: Water shell side: 

Density (ρt) – 996Kg/m3 Density(ρs) – 990Kg/m3 

Specific heat (Cpt) – 4180 J/kg K Specific heat (Cps) – 4180 J/kg K 

Conductivity (kt) – 0.64 W/mK Conductivity (ks) – 0.63 W/mK 

Viscosity (µt) – 0.00079 Kg/m-s	
   Viscosity (µs) – 0.00053 Kg/m-s	
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such as grasping [14], flexion and extension of limbs [15] and rotation of wrist with maximum accuracy and provide 
the corresponding action(s). 

 
For a bionic arm to be implemented on a patient using electromyographic [16,17] technique, it should be trained 

and tested with a test person*1, which is a prerequisite stage where the bionic arm is required to replicate the actions 
of the test person. This stage is very crucial as the accuracy with which the bionic arm traces the path of the test 
person’s hand can be determined and optimized [18,19]. 

Most of the works done by pioneers in the field of prosthetics to map muscle signals to joint actuations in 
prosthetic arm are based on Pattern Recognition and Classification, that come under Supervised Machine Learning. 
Taşar, B., & Gülten, A. (2017) used Fuzzy logic based classification method to map the forearm muscle movements 
to joint movements of a bionic arm, using surface electrodes [20,21,22]. Pattern recognition methods have been 
widely used to map the EMG signals captured at the amputated end to the bionic joints [23].Classification, a type of 
Supervised Machine Learning [24,25,26], was used to identify the hand movements corresponding to EMG signals 
recorded from a user. Geethanjali, P. (2016) used different types of classifiers to recognize patterns in the acquired 
EMG signals for operating a robotic hand, and the features and performances of the classifiers were determined [27].  

 
This work aims to understand how a human hand functions by developing bionic models that mimic the 

movements of a human hand. In this work, two models are proposed to map the upper limb movements of a test 
person (collected from sensors) to corresponding angular displacements of bionic joints. The first model emphasizes 
finding an interpolated sensor value from consecutive sensor values using fuzzy logic. The second model uses a 
Regression-based pattern recognition model, by training an Artificial Neural Network (ANN)with recorded sensor 
data and testing it in real-time. It is concluded that the ANN model is better than the fuzzy logic model. Bionic elbow 
and wrist models were developed in the second model. The hand gestures of the test person were verified with 
movements of the bionic models. The human hand is considered as a rigid body here [23]. Only voluntary actions of 
the human’s right hand are considered in this work. 

 
*1 A test person is the one who has similar bone and muscle structure as that of the patient. 

 

2. DEVELOPMENT OF FUZZY LOGIC MODEL 

To capture the movements of elbow and wrist joints, a sensor glove was developed in which flex sensors [24] 
were placed at the joint portions of the glove. Flex sensors were used to capture flexion and extension actions of 
elbow and wrist joints. A rotary potentiometer was used to capture the turning of wrist. The list of joint movements 
and their ranges are tabulated in Table 1. 

 
Table 1. Different movements of elbow and wrist. 

 

Joint Movements Minimum angle Maximum angle 

Elbow Flexion and extension 30° (flexion) [25] 180° (extension) [25] 

Wrist Flexion and extension 0° (flexion) *2 150° (extension)*3 

Wrist Turning 0° (supination) [26] *4 163° (pronation) [26] *5 
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*2,*3 Note: While measuring the flexion angles of the test person’s wrist, it was observed that the maximum flexion 
and extension occurred at 2° and 148° respectively (measured using Goniometers [27]). The angles were 
approximated to 0° and 150° 
 
*4,*5 Note: In the citation [26] the pronation and supination angles when the elbow is kept at 90° are considered.  
Also, the values for pronation and supination given in the citation are 72.96° and 88.59° respectively. These angles 
are the same as 90°+72.96°=162.96° and 90°-88.59°=0.41° which are approximated to 163°and 0° respectively. 
 

2.2 Experimental Setup for the First Model 

The experimental setup for the first model is shown in Figure 1.  

 
 

Figure 1. Experimental setup for measurement of flexion at elbow and wrist. 
 
 

Flex sensors, S1 and S2 were attached to the elbow and wrist parts of a glove worn by the test person. LEDs 
L1,L2, L3 and L4 were used to indicate extreme elbow flexion, extreme elbow extension, extreme wrist flexion and 
extreme wrist extension, respectively. Flex sensor readings were taken continuously with an interval of 0.1s. Based 
on the difference between two consecutive readings, ΔSn=|Sn-Sn-1|at time tn, a fuzzy membership value fmn was 
assigned. An interpolated sensor value pan was found using fmn and mapped to the range of joint’s angular 
displacement values in a continuous range. Tables 2 and 3 show the assignment of fuzzy membership values to elbow 
and wrist flexion respectively. The steps involved in this model are shown in Figure 2. The assignment of fuzzy 
membership values for different values of the difference between consecutively recorded sensor values for elbow 
flexion and wrist flexion are listed in Tables 2 and 3 respectively. 
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Table 2. Fuzzy membership value assignment (fmn1) 
based on the difference (ΔSn1) between consecutive 

flex sensor readings from S1 

 Table 3. Fuzzy membership value assignment (fmn2) 
based on the difference (ΔSn2) between consecutive 

flex sensor readings from S2 
 

Slope Difference 
(ΔSn1) 

Fuzzy 
membership 
value (fmn1) 

 

Slope Difference 
(ΔSn2) 

Fuzzy 
membership 
value (fmn2) 

 

0≤ΔSn1<0.015 0  

 

0≤ΔSn2<0.015 0 

 

0.015≤ΔSn1<0.02
5 0.15  

 

0.015≤ΔSn2<0.02
5 0.10 

 

0.025≤ΔSn1<0.04 0.3  

 

0.025≤ΔSn2<0.04 0.25 

 

0.04≤ΔSn1<0.065 0.5  

 

0.04≤ΔSn2<0.065 0.4 

 

0.065≤ΔSn1<0.08 0.7  

 

0.065≤ΔSn2<0.08 0.65 

 

0.08≤ΔSn1<0.1 0.9  

 

0.08≤ΔSn2<0.1 0.8 

 

ΔSn1≥0.1 1  

 

ΔSn2≥0.1 1 
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Figure 2. Control flow for Mapping using the fuzzy logic model. 
 

 
Figures 3 and 4 show the plots of recorded sensor value versus time and the difference versus time, where, 

ebend(t) and delta ebend(t) refers to flex sensor data at the elbow joint and the difference between consecutive sensor 
values, respectively. Figure 4 shows the flex sensor output and the difference between consecutive outputs at an 
interval of 0.1s. 

 

Figure 3. Output from flex sensor S1. 

 
Figure 4. Difference between consecutive flex sensor (S1) readings. 

 
From Figure 4, in the region A-B, there is a gradual change in flexion value, hence there is a smaller slope. In 

this region, the calculated interpolated sensor value has more membership in A than in B. In the region B-C, the 
change in the flexion is quite rapid, hence the slope is steeper. In this case, the calculated interpolated sensor value 
has more membership in C than in B. 

 
Although the model was able to predict the angular displacement from the sensor values, it was observed that 

the model worked well for slow movements; it gave erroneous angles during rapid flexion and extension. The model 
could not cater to the overlapping of sensor values for neighboring categories, which resulted in mapping with 
considerable inaccuracies. 
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3. DEVELOPMENT OF NEURAL NETWORK-BASED MODEL 

In this model, the range of angular displacement values was discretized. For instance, flexion of wrist within the 
subrange 55° to 64° was categorized as 60° (the target angle) and the subrange 65° to 74° was categorized as 70°. 16 
discrete categories for flexion were considered with an interval of 10°. 

 
•   Range of angles for elbow flexion: from 30° (flexion) to 180° (extension), Interval: 10° 
•   Range of angles for wrist flexion: from 0° (flexion) to 150° (extension), Interval: 10° 

 
3.1 Data Collection 

The sensor glove was worn by the test person. The elbow and wrist were positioned at different angles, which 
were verified using Goniometer (Figure 5). 

 

 
Figure 5. Goniometers. 

 
Flex sensor readings for different angles in the range were taken. The overlapping of sensor values for an 

angle/category with that of the neighboring angles/categories ruled out the use of algorithms that involved linear 
interpolation. Figures 6 and 7 are the plots of flex sensor value versus time for different included angles at the elbow 
joint and wrist joint respectively. 
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Figure 6. Sensor data collection from S1 for elbow flexion. 

 

 

Figure 7. Sensor data collection from S3 for wrist flexion. 
 

Since there was considerable overlapping between neighboring categories (angular displacements), the model 
was considered to be a regression problem under supervised machine learning. Mapping for rotation of wrist was 
also done in this model. For rotation of the wrist, 3 discrete states were considered: Supination (0°), Neutral position 
(90°) and Pronation (163°). 

 
3.2 Training and Optimization of the Neural Network 

A Neural Network was created using the Neural Network Toolbox in MATLAB and was trained with datasets 
to map a range of sensor values (input) to the required angular displacement of actuators (targets).The elbow was 
positioned at different angles from 30° to 180° with an interval of 10°.This was ensured using a goniometer 
[25].Sensor values from flex sensor S1 were recorded for each angle in the considered range. After numerous trials 
with a different number of datasets, different extents of overlapping and various parameters of the neural network, 
the network with maximum performance was taken into consideration. Thousand sensor values for one 
angle/category were considered; there were 16 datasets for 16 discrete angles (30°, 40°…to 180°) and given as 
training data to the neural network. The neural network has 1 node in its input layer (input is taken from one sensor, 
S1), 2 hidden layers with 10 nodes and 20 nodes in it and 16 nodes in the output layer. The target datasets for the 
neural networks for elbow flexion and wrist flexion were prepared as shown in Figures 8 and 9 respectively. 
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Figure 8. Targets for the neural network for elbow 
flexion. 

	
  
 

Figure 9. Targets for the neural network for  
wrist flexion. 

 
Note:	
  The	
  above	
  steps	
  are	
  carried	
  out	
  for	
  wrist	
  flexion	
  too,	
  for	
  range:	
  0°	
  to	
  150°	
  and	
  an	
  interval	
  of	
  10°	
  (16	
  
targets),	
  with	
  the	
  same	
  specifications	
  for	
  its	
  neural	
  network.	
  
	
  

The performance of the trained neural network depends on the number of hidden layers, number of nodes in the 
hidden layer(s), number of training data points given and degree of overlapping between neighboring categories. 
Different datasets were prepared for different degrees of categories’ overlapping and tried in the network with 
different parameters. 

 
The ANN was trained with the 1000 sensor values for each of the 16 categories of joint angles for elbow and 

wrist joints. The default features of the ANN are: 1000 input datapoints (flex sensor values) for each output category 
(joint angle), 2 hidden layers and 10 nodes and 20 nodes in the hidden layer. For different features of the ANN, the 
performance was noted in Table 4 and the corresponding ANN Training performance plots are shown in Figures 10, 
11, and 12. The ANN Training performance plots are plots of the ANN’s mean squared error (while training) versus 
the epoch, which is the number of passes for the ANN is passed with the datasets for training. It is a measure of the 
ANN’s learning capacity. 

 
Table 4. Performance of the ANN for different features (for elbow flexion data). 

 

S. No. 
Number of flex sensor  

datapoints for each joint 
angle category 

Number of 
hidden 
layer(s) 

Number of 
nodes in the 
hidden layer 

Performance of the 
ANN (Accuracy in 

mapping) 

1 1000 1 10 91.875% 
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2 1000 1 100 91.458% 

3 
(DEFAULT) 1000 2 10, 20 92.083% 

     

	
  

Figure 10. ANN performance for 1000 datapoints, 
10 nodes in 1 hidden layer. 

	
  

Figure 11. ANN performance for 1000 datapoints, 
100 nodes in 1 hidden layer. 

 
 

 

Figure 12. ANN performance for 1000 datapoints, 10, 20 nodes in 2 hidden layers. 
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When the number of nodes in the hidden layer is increased, the performance of the ANN increases. However, if 
the number of hidden nodes is increased too far, then the ANN reaches a point of overfitting, where it learns the 
datapoints along with the noise which contributes to the lesser performance and higher mean squared error (Figure 
11 compared to Figure 10). By increasing the number of hidden nodes, the ANN is trained with a lesser number of 
epochs, at the cost of computation time, which may cause delays while testing. Increasing the number of hidden 
layers increases the performance of the ANN as the hidden layer(s) are associated with the input layer that enables it 
to generate the desired outputs while training [28]. Increasing the number of input datapoints also increases the 
mapping performance of the ANN. 

 
The maximum performances obtained for elbow flexion and wrist flexion are 92.083% (Figure 13) and 94.458% 

(Figure 14), respectively. 
 

 
Figure 13. Testing the ANN for elbow flexion. 
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Figure 14. Testing the ANN for wrist flexion. 

 

3.3 Implementation of NN Models Into Bionic Models of Elbow And Wrist 

Mechanical models of the Bionic arm, with a scaling factor of 1:1, have been made using Sunboard and 
integrated with the circuit (Figure 15). The models were designed to replicate the actions of a human hand. Servo 
motors M1, M2 and M3 were used to actuate the joint motors for elbow flexion, wrist rotation and wrist flexion 
respectively. Separate models for bionic elbow and bionic wrist were done due to load carrying constraints of 
servo motor M1. Flex sensors S1 and S3 were used to capture flexion of elbow and wrist respectively [29]. To 
capture the rotation of the wrist, a rotatory potentiometer, S2, which is very similar to haptic knob (used for 
rehabilitation of hand functionality), was used [30]. LEDs LA, LB and LC were used to indicate the pronation, neutral 
position and supination positions of a wrist respectively [31]. Two neural networks were created and trained with 
datasets of flex sensor values for each angle. They were tested with real-time data from sensors S1 and S3 (due to 
elbow flexion and wrist flexion test person who wore the flex glove). The outputs of the tested neural network were 
angular displacement values of the elbow joint and wrist joint, were written onto servo motors M1 and M3 in the 
bionic arm models (Figure 15). For rotation of the wrist, sensor values from S2 were recorded, based on which servo 
motor M2 was controlled (Figure 16). 
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Figure 15. Experimental setup of the ANN based model. 

 

 
Figure 16. Control flow for rotation of bionic wrist joint. 

 
This model was verified in real-time using goniometers to measure the flexion angles at the joints of the test 

person and using a 360° protractor sheet to measure the flexion angles at the joints of the bionic models. 
 

 4. RESULTS OF THE WORK  

In Model 1, the flexion and extension of the elbow and wrist were captured using flex sensors. The maximum 
flexion and extension were indicated using the corresponding LEDs. The logic involved mapping the sensor values 
to a continuous range of angles. Extreme cases of wrist flexion are shown in Figure 17. 

 

Read	
  sensor	
  value	
  from	
  S2 for	
  wrist	
  rotation
S2_value	
  =	
  SensorValue(S2)

if(S2_value>540)
switch_ON(LED,LA)
motor_write(M2,0°)

(PRONATION)

if	
  (S2_value≤540	
  &&	
  S2_value>260)
switch_ON(LED,LB)

motor_write(M2,90°)
(NEUTRAL	
  POSITION)

if(S2_value>540)
switch_ON(LED,LC)

motor_write(M2,163°)
(SUPINATION)
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Figure 17. Flexion and Extension of the wrist (Model 1). 

 
The first model focused on finding an interpolated value between the previously measured value and the 

currently measured value using fuzzy logic and mapping that value to the actuation of the corresponding joint motor 
using linear interpolation. The model worked well in the case of extreme flexion and extreme extension for the elbow 
and wrist joints and for slower transitions while flexing. The model was not able to map rapid changes from the flex 
sensor, thus leading to inaccurate joint motor values. In Model 2, flexion and extension of elbow and wrist were 
captured using flex sensors for 16 different angles’ categories. Additionally, rotation of the wrist was captured using 
a rotary potentiometer for pronation, supination and neutral position of the wrist. A neural network mapping was 
done to map the flexion of the elbow and wrist to their corresponding angular displacement values. The range consists 
of 16 different angle ranges for both the cases of flexion and 3 different angles for rotation of the wrist. Mechanical 
models of the bionic elbow and bionic wrist were constructed with motors attached to the joints to simulate the hand 
movements of the test person. Extension and flexion of the elbow in Model 2 are shown in Figures 18 and 19. For 
the wrist joint, extreme flexion and flexion at 90°in Model 2 are shown in Figures 20 and 21, respectively. 

 

 
Figure 18. Mapping of elbow extension. 

 
	
  

 
Figure 15. Experimental setup of the ANN based model. 

 

 
Figure 16. Control flow for rotation of bionic wrist joint. 

 
This model was verified in real-time using goniometers to measure the flexion angles at the joints of the test 

person and using a 360° protractor sheet to measure the flexion angles at the joints of the bionic models. 
 

 4. RESULTS OF THE WORK  

In Model 1, the flexion and extension of the elbow and wrist were captured using flex sensors. The maximum 
flexion and extension were indicated using the corresponding LEDs. The logic involved mapping the sensor values 
to a continuous range of angles. Extreme cases of wrist flexion are shown in Figure 17. 

 

Read	
  sensor	
  value	
  from	
  S2 for	
  wrist	
  rotation
S2_value	
  =	
  SensorValue(S2)

if(S2_value>540)
switch_ON(LED,LA)
motor_write(M2,0°)

(PRONATION)

if	
  (S2_value≤540	
  &&	
  S2_value>260)
switch_ON(LED,LB)

motor_write(M2,90°)
(NEUTRAL	
  POSITION)

if(S2_value>540)
switch_ON(LED,LC)

motor_write(M2,163°)
(SUPINATION)
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Figure 19. Mapping of elbow flexion. 

 

 
Figure 20. Mapping of wrist flexion. 

 

 
Figure 21. Mapping of wrist flexion (at 90°). 
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Wrist rotation was done similar to a haptic knob to capture and map wrist pronation, neutral position, and 
supination  
(Figure 22). 

 

 
Figure 22. Mapping of pronation, neutral position and supination of the wrist. 

 
The first model could not be verified as the output range was continuous and it was difficult to measure the 

angle included at the bionic joints. The verification of the second model is given in Table 5, in which the number of 
success trials refers to the number of testing trials when the angle made by the test person’s joint (measured using 
Goniometer) coincided with the angle made at the corresponding bionic joint (measured using the 360° protractor 
sheet). 

 
Table 5. Verification of Model 2. 

 
Joint Elbow flexion Wrist rotation Wrist flexion 

Sensor Flex sensor Rotary potentiometer Flex sensor 

Mapping Method ANN Conditional clause ANN 

Output range {30°,40°,…180°} {0°, 90°, 163°} {0°,10°,…150°} 

Number of testing trials n(T) 48 (3 trials for 
each angle) 

15 (5 trials for each 
angle) 

48 (3 trials for each 
angle) 

Number of success trials n(S) 40 15 42 

Experimental performance 
=𝒏𝒏(𝑺𝑺)
𝒏𝒏(𝑻𝑻)

∗ 𝟏𝟏𝟏𝟏𝟏𝟏	
  (%) 83.33% 100% 87.5% 

Estimated ANN Performance 92.083% ANN was not used 94.083% 

 
	
  

 
Figure 19. Mapping of elbow flexion. 

 

 
Figure 20. Mapping of wrist flexion. 

 

 
Figure 21. Mapping of wrist flexion (at 90°). 
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5. CONCLUSION 

To understand the development and control of a Transhumeral bionic, 2 models were developed in this work to 
map the flexion of elbow and wrist to the corresponding angular displacements of joints in a bionic arm model. A 
flex glove was developed (flex sensors placed at the elbow and wrist joints), worn by the test person, and sensor 
readings were taken depending on the flexion movements of the test person. 

 
The first model was based on fuzzy logic. Based on the difference in two consecutive flex sensor readings (Sn-

1, Sn), an interpolated sensor value was determined, that had fuzzy membership in Sn-1 and Sn. The fuzzy membership 
value was determined using the difference between Sn-1 and Sn. Lesser the difference, more the membership of the 
interpolated sensor value in Sn-1 and vice-versa. The interpolated flex sensor value was mapped to the angular 
displacement of the joint using linear interpolation. However, the model didn’t account rapid flexion changes and 
was inaccurate as the domain (flex sensor range) and range (servo motor range) were continuous. 

 
In the second model, the range of angular displacements was categorized into 16 discrete sets of angles for 

flexion of elbow (from 30o to 180o) and wrist (from 0o to 150o). To address the overlapping problem encountered in 
the previous model, a machine learning approach was sought. A neural network was created in MATLAB to map the 
flex sensor value to the corresponding joint’s angular displacement. For each of the 16 angles’ categories, flex sensor 
values were recorded for the input datasets. The neural network was trained using the input datasets and tested. This 
method was carried out for flexion at elbow and wrist joint. The rotation at the wrist joint was captured using a rotary 
potentiometer, which is similar to a haptic knob. Bionic models of elbow and wrist were fabricated with servo motors 
placed at their joints. While testing in real-time, the bionic models actuated in the way the hand of the test person 
moved. 
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