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ABSTRACT 

In this paper, vortex shedding and suppression are numerically investigated as autonomous and nonautonomous 
dynamical systems, respectively. Lagrangian coherent structures (LCSs) are used as a numerical tool to analyze these 
systems. These structures are ridges of finite time Lyapunov exponent (FTLE), which act as material surfaces that 
are transport barriers within the flow. Initially, the utility of LCSs is explored for revealing the coherent structures of 
these systems. Finally, an active flow control method, steady rotation, is applied to the nonautonomous dynamical 
system with different speed ratios to mitigate vortex shedding magnitude. This will eventually turn the system into 
an autonomous system. Fixed saddle points, separation profiles essentially as unstable time variant manifolds 
attached to cylinder wall, and evolution of other unstable manifolds with variant speed ratios are analyzed with 
reference to LCSs. It is revealed that speed ratio of 2.1 fully suppresses the von Karman vortex street at Reynolds 
number of 100 and system turns into an autonomous dynamical system with fixed saddle points and time-invariant 
manifolds.  

 
Keywords: Active flow control; Circular cylinder; Lagrangian coherent structures; Steady rotation control; 

Vortex shedding.  
 

1. INTRODUCTION 

The flow past bluff bodies have been put to computational and experimental research throughout the history of 
fluid mechanics. There are all kinds of strange behaviors of flow around bluff bodies. The creeping flow, pair of 
stable vortices, laminar vortex street, turbulent wake, and the transition of the laminar boundary layer to turbulent 
and turbulent vortex street are different characters of flow over bluff bodies, which are caused by the change in 
Reynolds number. The control of the flow field is also an active area. Two kinds of system are widely used from flow 
field perspective, autonomous and nonautonomous systems. Autonomous systems are one in which vortex shedding 
can be controlled as a self-dependent entity, whereas nonautonomous systems lack such kind of an intent. 
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Autonomous systems often lead to the formation of Lagrangian coherent structures (LCSs). LCSs are static rotation 
zones existing in the flow field that interrupts an incoming flow and exhibits sufficient momentum. 

Lagrangian coherent structures (LCSs) are important to consider from the engineering perspective. Such 
structures are powerful enough that they can damage the structure if not properly investigated. Marine structures like 
offshore rigs operate in a deep-sea environment, where vortex shedding occurs in a prominent manner at varying 
turbulence levels. During such phenomenon, undisturbed rotating patterns are formed in the flow that exhibits high 
level of energy. If such patterns formed near an offshore platform, they can damage the platform in a severe manner. 
So, identification of such coherent structures is essential for a safe working environment. 

 
Chan et al. (2011) reviewed the recent advances in flow control particularly 3D forcing, local and global 

stability-based control. The authors revealed that unsteady vortex shedding can be stifled for the gap sizes ranges 
from 1D to 5D. It was also noticed that unsteady wake suppression could be achieved by the rotation of cylinders in 
the opposite direction. Rockwood, Taira, and Green (2016) studied the wake behind the cylinder to explore the 
physics behind the complex vortex shedding. Lagrangian coherent structure (LCS) was used to formulate the 
investigation. In numerical results, as well as experimental results, it was noticed that Lagrangian saddle point 
remained attached to the surface of the cylinder until the separation of the vortex.  An experimental study was carried 
out by Dol (2013), in which the author investigated the wake produced at Reynold's number 2000. Significant vortex 
changes were observed by the rotation of the cylinder. 

 
The steady rotation of circular cylinder has also been utilized to control flow field around the cylinder. The 

speed ratio (λ ) is defined as the ratio of tangential velocity of the cylinder to free stream velocity of the fluid.(Barnes 
(2000), as well as some other recent researchers (Rodríguez et al. 2015; Jin and Dong 2016; Mao, Blackburn, and 
Sherwin 2015; Chandran, Janardhanan, and Menon 2018; Bovand et al. 2015), found that vortices were suppressed 
at λ ≥ 0.6 for Re 50. λ ≥ 1.5 suppresses vortices for Re=2000. An experimental study was conducted by Cicolin 
and Assi (2017), in which it concluded that the strength of vortex shedding got weakened by rotating the circular 
cylinder at speed ratios between 1 and 2.7. It was also reported that the speed ratio of 2 nearly suppresses the von 
Karman vortex street. In another study, the suppression of periodic vortex shedding was also studied experimentally 
by Dol, Kopp, and Martinuzzi (2008) by rotating the circular cylinder. They also concluded that vortices were almost 
suppressed at speed ratio 2. Both numerical and experimental investigations were conducted by Chan et al. (2011) to 
study the vortex shedding and suppression of vortex shedding for counter-rotating cylinders. A similar numerical 
study was conducted by Chan and Jameson (2010) to study the suppression of doublet like counter-rotating cylinders. 
Their results clearly revealed that when cylinders were rotated in counter directions, unsteady vortex could be 
completely suppressed. 

 
The understanding of flow rheology plays a vital role in control methodology. One recent approach to 

understanding flow topology in a typical fluid dynamical system is to explain it with the help of time variant 
manifolds. FTLE field extracts these manifolds. The ridges of FTLE are called LCS (Haller 2001). Under the complex 
chaotic flow, there exist patterns of coherent structures that are sources of transport of passive fluid. LCS is a reliable 
tool to study this transport of passive fluid. Salman et al. (2007) studied the prediction of tracer transport by LCSs. 
Vortex was redefined objectively by Haller (2005) from the perspective of coherent structures. So, LCSs are of utmost 
importance in studying complex flows. 

 
In the current research, the numerical study is conducted for the flow past a rotating circular cylinder at a fixed 

Reynolds number of 100 in order to determine the Lagrangian coherent structures (LCSs). Since the previous work 
regarding LCS is very limited and leaves a huge gap for the future research, the flow induces the vortex street at 
Reynolds number of 100 terms as Von Karman Vortex Street as stated by Mittal and Kumar (2003) and Meunier 
(2014). At such Reynolds number, the flow problem is 2D as 3D effects are negligible at low speeds (Barkley and 
Henderson 1996). The two-dimensionality of Von Karman Vortex Street motivates us to apply two-dimensional 
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LCSs code. Since the rotation of the cylinder does not affect the dimensionality of flow, the idea of two-dimensional 
FTLE is utilized to study the flow field characteristics. Four different speed ratios are selected for the CFD analysis 
as 0.5, 1, 1.5, and 2.1. The discrete velocity data is used to compute LCSs. LCSs provide the qualitative information 
of skeleton structures involved in the transport of fluid. 

 

METHODOLOGY 

FINITE TIME LYAPUNOV EXPONENT (FTLE) 

Coherent structures form a skeleton that delineates the flow topology. These structures take an active part in the 
rheology of flow, helping passive fluid (requires no external energy source) to move, stretch, and compress in the 
physical domain. LCSs act locally as the most attracting, repelling, and shearing material surfaces. One way to find 
FTLE field is to find out the maximum stretching of perturbation placed close to a given point in a physical domain. 
Since FTLE is a computational parameter that is useful in order to determine the rate at which separation of the 
infinitesimally streamlines appears in a flow, the flow separation for such a technique can predict the location of 
LCSs during a flow. Consider a particle at x(𝑡𝑡$) ∈ D ⊂ℝ( at an initial time 𝑡𝑡$ when advected by flow field, after 
time T it moves to (𝑡𝑡$) ⟼ ∅,-

,-./(𝑥𝑥)  and let the initial perturbation be 𝛿𝛿𝛿𝛿(𝑡𝑡$). 
	
  

𝑦𝑦(𝑡𝑡$) = 𝑥𝑥(𝑡𝑡$) + 𝛿𝛿𝛿𝛿(𝑡𝑡$)                                                        (1) 

𝛿𝛿𝛿𝛿 𝑡𝑡$ + 𝑇𝑇 =
6∅7-

7-89 :

6:
𝛿𝛿𝛿𝛿(𝑡𝑡$) + 𝑂𝑂( 𝛿𝛿𝛿𝛿(𝑡𝑡$) <)                                     (2) 

As initial perturbation is small, so 𝑂𝑂( 𝛿𝛿𝑥𝑥$ <
<) can be neglected. 𝐿𝐿< gives the magnitude of this perturbation. 

𝛿𝛿𝛿𝛿 𝑡𝑡$ + 𝑇𝑇 ) =
6∅7-

7-89 :

6:
𝛿𝛿𝛿𝛿(𝑡𝑡$) = < 𝛿𝛿𝛿𝛿 𝑡𝑡$ ,

6∅7-
7-89 :

6:

∗
6∅7-

7-89 :

6:
𝛿𝛿𝛿𝛿 𝑡𝑡$ >              (3) 

where 
6∅7-

7-89 :

6:

∗

denotes the adjoint (transpose) of 
6∅7-

7-89 :

6:
. The symmetric matrix 

∆(𝑥𝑥, 𝑡𝑡$, 𝑇𝑇) =
6∅7-

7-89 :

6:

∗
6∅7-

7-89 :

6:
                                                (4) 

Eq. 4 is referred to as the finite time version of Cauchy-Green deformation tensor. The motivation is to find out 
the maximum stretching of perturbation. This can be done only if the perturbation is aligned with the eigenvector 
corresponding to maximum eigenvalue of ∆(𝑥𝑥, 𝑡𝑡$, 𝑇𝑇). Therefore, 

max
F:(,-)

𝛿𝛿𝛿𝛿 𝑡𝑡$ + 𝑇𝑇 ) = < 𝛿𝛿𝛿𝛿 𝑡𝑡$ , 𝜆𝜆HI:(∆(𝑥𝑥, 𝑡𝑡$, 𝑇𝑇))𝛿𝛿𝛿𝛿 𝑡𝑡$ >                    (5) 

	
  = 𝜆𝜆HI:(∆(𝑥𝑥, 𝑡𝑡$, 𝑇𝑇)) < 𝛿𝛿𝛿𝛿 𝑡𝑡$ , 𝛿𝛿𝛿𝛿 𝑡𝑡$ >  = 𝜆𝜆HI: ∆ 𝑥𝑥, 𝑡𝑡$, 𝑇𝑇 𝛿𝛿𝛿𝛿 𝑡𝑡$ )  
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𝜆𝜆HI: ∆ 𝑥𝑥, 𝑡𝑡$, 𝑇𝑇  is spectral norm of 
6∅7-

7-89 :

6:
. The separation of two advected particles can be written in terms 

of Liapunov exponent 

𝜎𝜎,-
/ 𝑥𝑥 = L

/
𝑙𝑙𝑙𝑙( 𝜆𝜆HI: ∆ 𝑥𝑥, 𝑡𝑡$, 𝑇𝑇                                                  (6) 

𝜎𝜎,-
/ 𝑥𝑥  is a Finite Time version of Liapunov Exponent and is called FTLE field. It is a measure of the average 

maximum expansion of a pair of advected particles. If particles are integrated forward in time, the maximum 
expansion can be computed using FTLE field. But we are also interested to find out maximum compression of 
particles. One adopted way is to utilize the idea of backward integration, such that maximum compression of particles 
in forward time corresponds to maximum expansion in backward time. To address compression and expansion, 
manifolds are defined. Manifold here is defined in ℝ(as (n-1)-dimensional hypersurface 𝑊𝑊 that is smooth. The stable 
manifold	
  𝑊𝑊P(x∗) ⊂ D of a hyperbolic fixed point x*is defined as 

𝑊𝑊P x∗ = {xo⊂ D: lim 
t→∞

x 𝑡𝑡;xo =x*                                   (7) 

The trajectories on either side of the stable manifold will diverge in forward time. Similarly, unstable 
manifold	
  𝑊𝑊SP(x∗) ⊂ D of a hyperbolic fixed point x* is defined as 

𝑊𝑊SP x∗ = {xo⊂ D: lim 
t→-∞

x 𝑡𝑡;xo =x*                                      (8) 

The trajectories on either side of the unstable manifold will diverge in backward time. Both unstable and stable 
manifolds are invariant in autonomous systems. 

 

NUMERICAL PROCEDURE, RESULTS, AND DISCUSSIONS 

The precursor to apply LCSs methodology is to find out the velocity field of any dynamical system. This velocity 
field is utilized to integrate particles. In fluid mechanical systems, Computational Fluid Dynamics (CFD) tool is 
employed to study the velocity field. The velocity is generally a function that is dependent on both spatial and 
temporal coordinates.  Once velocity field is obtained, it can be imported into the code. MATLAB code is used to 
compute FTLE with the following procedure: 

 
•   Create a structured grid of particles (LCS Grid). 
•   Read data file including mesh coordinates and corresponding velocities at the initial time step. 
•   Project velocities back to mesh coordinates and then interpolate velocities in the domain of LCS. 
•   Integrate particle positions in LCS domain with these interpolated velocities by using numerical 

integration. Euler’s method of integration is usually used for this purpose. 
•   Integrate these integrated new positions using the velocities at the new time step, and repeat it until the 

integration time is reached.  
•   Calculate the deformation gradient for each particle and subsequently the FTLE. 
•   Extract ridges of FTLE, which are Computed Lagrangian Coherent Structures (LCSs). 
 
The deformation gradient is calculated using the first order difference approximation.  



157Ahsan Shehzad, Tauseef Ur Rehman, Aamir Sohail, Tehmina Ambreen and Muhammad Arsalan Anwar

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−+
−−+

−−+
−−+

−−+
−−+

−−+
−−+

−−+
−−+

−−+

−−+

−−+
−−+

−−+
−−+

−−+
−−+

=
Φ

)0)(1,,()0)(1,,(
))(1,,())(1,,(

)0)(,1,()0)(,1,(
))(,1,())(,1,(

)0)(,,1()0)(,,1(
))(,,1())(,,1(

)0)(1,,()0)(1,,(
))(1,,())(1,,(

)0)(,1,()0)(,1,(
))(,1,())(,1,(

)0)(,,1()0)(,,1(
))(,,1())(,,1(

)0)(1,,()0)(1,,(
))(1,,())(1,,(

)0)(,1,()0)(,1,(
))(,1,())(,1,(

)0)(,,1()0)(,,1(
))(,,1())(,,1(

)),,((0

kjizkjiz
TkjixTkjiz

kjiykjiy
TkjizTkjiz

kjixkjix
TkjixTkjiz

kjizkjiz
TkjiyTkjiy

kjiykjiy
TkjiyTkjiy

kjixkjix
TkjiyTkjiy

kjizkjiz
TkjixTkjix

kjiykjiy
TkjixTkjix

kjixkjix
TkjixTkjix

dx
kjixd T

  

Green	
  Cauchy	
  deformation	
  tensor	
  is	
  then	
  computed	
  using	
  the	
  above	
  equation.	
  It	
  is	
  to	
  be	
  noted	
  that	
  
Green	
  Cauchy	
  deformation	
  tensor	
  is	
  a	
  symmetric	
  3x3	
  matrix.	
  Thus,	
  it	
  will	
  have	
  three	
  Eigen	
  values	
  and	
  
corresponding	
  Eigen	
  vectors.	
  The	
  Eigen	
  vector	
  corresponding	
  to	
  the	
  maximum	
  Eigen	
  value	
  defines	
  
the	
  maximum	
  stretching	
  direction.	
  This	
  information	
  is	
  utilized	
  to	
  calculate	
  FTLE	
  and	
  plotted	
  in	
  Fig.	
  1.	
  
The	
  darker	
  red	
  color	
  represents	
  the	
  field	
  with	
  higher	
  values.	
  The	
  ridges	
  (higher	
  values)	
  extract	
  LCSs.	
  

	
  

 

Figure 1. Depiction of FTLE field. 
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•   Integrate these integrated new positions using the velocities at the new time step, and repeat it until the 

integration time is reached.  
•   Calculate the deformation gradient for each particle and subsequently the FTLE. 
•   Extract ridges of FTLE, which are Computed Lagrangian Coherent Structures (LCSs). 
 
The deformation gradient is calculated using the first order difference approximation.  
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as 1 unit. Reynolds number of 100 equates the velocity smU 1= , density 31 mkg=ρ and viscosity
sm201.0=µ . The field is initialized with a steady solution of NS equations with Reynolds number of 100. The 

transient analysis is done with time step sec1.0=Δt , such that the local maximum courant number does not 
exceed 70.2 . The time step and grid are independent enough to capture the desired results. Pressure and velocity 
are coupled with PISO scheme. Momentum and pressures are spatially discretized with QUICK method, and second-
order implicit temporal formulation is used for transient formulation. Time histories of lift and drag coefficients are 
monitored and plotted in Fig. 2. Fast Fourier Transform of lift coefficient reveals the frequency of transverse 
oscillations. 

 

Figure 2. Illustration of FFT of Lift signal without rotation. 
	
  

The frequency is calculated to be Hzf 1709.0= . The frequency is related to Strouhal number by the 
following relationship: 

U
fDSt =                                                                         (9) 

The nondimensionalization helps equate frequency with Strouhal number. Thus, Strouhal number is equal to 
0.1709. It is close to the value of 0.172, provided by Mahir and Altaç (2008) with an error of approximately 0.6%. 
The frequency elucidates the shedding of two periodic vortices. Both vortices rotate in opposite directions and shed 
downstream. The shedding of one vortex causes the formation of other vortex and the process continues. Velocity 
contours at one instant are shown in Fig. 3. 
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Figure 3. Depiction of velocity contours of von Karman vortex shedding. 
 

Fig. 3 reveals that technical features like separation profile, separation point, wake dynamics, and fluid advection 
are not evident from velocity information. FTLE approach is utilized to diagnose underlying structures. Velocity at 
each time step is monitored and used to calculate FTLE field. The FTLE grid spacing is selected in such a way that 
each unit of domain length is divided into 100 equal parts. The realistic computation of LCSs requires small grid 
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towards it and flee tangently to it without crossing it. This manifold separates the recirculation zone of eddy with 
shear layer. The separation point and separation profile thus correspond to this manifold. This is evident from Fig. 4, 
where U1 and U2 manifolds correspond with separation profiles. Fig. 5 reflects the unstable manifolds for a 
continuous flow phenomenon at the cylinder wall, since vortex shedding appears after fixed intervals and must be 
observed carefully regarding formation of unstable manifolds. 

 

Figure 4. Separation profiles associated with unstable manifolds U1 and U2. 
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Figure 5. Illustration of instantaneous unstable manifolds.  
 

The	
  complete	
  evolution	
  of	
  unstable	
  manifolds	
  is	
  presented	
  in	
  Fig.	
  6.	
  

	
  

	
  
	
   	
  

	
   	
   	
  

	
   	
  

	
  

 
Figure 6. Evolution of unstable manifolds at integration time 9 Sec. 
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SUPPRESSION OF VORTEX SHEDDING 

The steady rotation is chosen here as an active flow control method for the suppression of these vortices. The 
cylinder is rotated at different steady speed ratios, and the velocity data is recorded. The speed ratio is defined as 

U
rΩ

=λ                                                                          (10) 

where r is the radius of a circular cylinder, and U is the free stream velocity. Ω  is the angular frequency in 
rad/sec. The cylinder is rotated at four speed ratios and magnitude of oscillations in lift is recorded. The magnitude 
recorded is defined as 

minmax ClClCl pp −=−                                                         (11) 

Table 1. Value of ppCl − at various speed ratios. 

Speed ratio Magnitude ppCl −  

0.0 0.5104 

0.5 0.5401 

1.0 0.5625 

1.5 0.4442 

2.1 0.0053 

 

It is evident from Table 1 that the strength of vortices mitigates for higher values of speed ratios. The value of 
speed ratio 2.1 completely suppresses unsteady vortex shedding. It must be noted that the cylinder is rotated 
counterclockwise; therefore, Magnus forces decrease the lift and even generate negative lift. If it had rotated in the 
clockwise direction, the Magnus forces would have generated positive lifts. The physics, however, does not change 
in both cases. Therefore, the results of anticlockwise rotation can directly correspond to the results of clockwise 
rotation. The lift graph for different speed ratios introduced at different instants is plotted in Fig. 7. The lift oscillation 
pattern and values are consistent to the published results of Paramane and Sharma (2009) and Ikhtiar et al. (2016). 
The velocity contours for the flow past a cylinder at speed ratio of 2.1 are shown in Fig. 8. As a result of high 
counterclockwise rotation, the shear layer (that rolls round a cylinder) stretches over a cylinder in the downstream 
flow. It indicates that, at λ=2.1, no shedding of vortices will appear as indicated by a straight line in Fig. 7.  

 

Figure 5. Illustration of instantaneous unstable manifolds.  
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Figure 6. Evolution of unstable manifolds at integration time 9 Sec. 
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Figure 7. Lift variation with time at various speeds. 
 

 

Figure 8. Velocity contours of the autonomous system at λ=2.1  
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From the perspective of unstable manifolds, this suppression is shown in Fig. 9. U1 and U2 are only unstable 
manifolds that are attached to the solid wall. Therefore, they are most affected by the rotation of the cylinder wall. 
Fig. 9 demonstrates that U1 and U2 immediately respond to rotation of cylinder, while information has not yet been 
passed to all other manifolds. All other manifolds behave exactly in the same manner as if the cylinder is not rotated. 
The particles attached to the wall acquire a velocity of the rotation, and the viscosity stratifies the velocity as distance 
normal to the wall increases. This is the way to pass information to the flow field. One clear consequence is that both 
U1 and U2 manifolds become curved in a circular fashion in the direction of rotation (counterclockwise here). They 
continue to move until they both combine to form one manifold U12. Fig. 9 (a–e) shows the evolution of this 
integration.  U3 and U4 manifolds are defined here after the merger of U1 and U2 into U12. Two manifolds are 
integrated into one manifold at the upstream and shed to the downstream. The upstream fluid pushes U3 and U4 
manifolds and bends them, causing them to nearly merge into one another. This process continues, and, at the same 
time, U12 manifold grows until fig h, where U3 and U4 separate from one another again. The U5 manifold also 
appears. The U5 manifold separates the region above it, indicating the recirculation or a weakly oscillating vortex 
and region below it, which is backward (reverse) flow as the manifestation of wall rotation. U4 in Fig. 9 depicts that 
it causes the shedding of the weakly oscillating vortex. U5 manifold periodically appears and disappears, and U45 
periodically sheds vortex, and the process continues until the system damps out the weak oscillations of the vortex, 
and it becomes a steady stable single vortex. The system transient state turns into a steady state. Fixed saddle point 
appears in the domain.  
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Figure 7. Lift variation with time at various speeds. 
 

 

Figure 8. Velocity contours of the autonomous system at λ=2.1  
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Figure 9. Evolution of unstable manifold for speed ratio 2.1. 

 

Stable and unstable manifolds are overlaid in Fig. 10. Intersection of these manifolds spots the fixed saddle 
point. The particles follow streamlines in this system. 

 

(a) The intersection of manifolds at two saddle point. 
 

 

(b) Corresponding streamlines acting as trajectories of particles. 
Figure 10. Illustration of an autonomous system.  
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CONCLUSION 

•   Vortex shedding and suppression are analyzed with reference to Lagrangian coherent structures. Vortex 
Street is controlled with varying speed ratios. The speed ratio of 2.1 completely suppressed oscillations 
and is in complete agreement to the previous research work. The system is shown to have turned into an 
autonomous system. 

•   It is also demonstrated that separation profiles are associated with only unstable manifolds. The 
separation point moved back and forth on the cylinder wall and is depicted by unstable manifolds. Thus, 
these manifolds are adequate in explaining vortex shedding. 

•   It is further revealed that the suppression of vortices caused two fixed saddle points to appear in a steady 
state. The overlaid stable and unstable manifolds revealed local recirculation zone. Only one stable 
vortex was confined within the boundaries of LCSs. 

•   The integration of the equation of streamline computed the trajectories of fluid particles. Hence, the 
unstable manifolds, in the considered non-autonomous system, and both stable and unstable manifolds 
in the autonomous system are required to understand the flow physics as mentioned in the literature. 
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