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ABSTRACT

The present article introduces an approach that uses the analytical target cascading (ATC) method for managing 
nonlinear optimal control problems. Using this ATC approach, a decomposed nonlinear optimal control problem is 
obtained. This decomposed nonlinear control problem is then used to solve a synchronous machine optimal control 
problem. The numerical behavior of this decomposed synchronous machine optimal control problem is then examined 
and the solution time properties are also investigated. We demonstrated ATC as a valuable tool to solving nonlinear 
optimal control problems. Results show that as we increase the control parameter  the total solution time will 
decrease.
Keywords: ATC; decomposition; hierarchical optimization; optimal control; optimization; control.

INTRODUCTION

   Many researchers have used ATC (Alexander et al., 2011, Chan, 2011, Guarneri et al., 2011 & Wang et al., 2013) 
to solve vehicle (Kim et al., 2003, Kang et al., 2014 & Bayrak et al., 2016), thermal (Choudhary et al., 2005), and 
airplane (Allison et al., 2006) problems. Michalek & Papalambros (2005) introduced an approach that modifies some 
components in ATC (Han & Papalambros, 2010 & Dormohammadi & Rais-rohani, 2013) to obtain a satisfactory 
answer. Lassiter et al. (2005) utilized the subgradient strategy to solve ATC problems. Kim et al. (2006) provided a 
technique for determining the optimal ATC components. Moussouni et al. (2009) introduced a multi-criteria approach 
for solving ATC problems. Li et al. (2008) used a precise approach to solve subproblems simultaneously at the same 
time. While, Tosserams et al. (2006) enhanced the performance of ATC by utilizing an approach that solves part of the 
problem on just an individual occasion. 

The optimization of hierarchical control systems has been studied by many authors (Jamshidi, 1997, Masmoudi et 
al., 2009, Picasso et al., 2010 & Sadati & Berenji, 2016). Li et al. (2013) used a decomposition approach to convert the 
optimal control problem into smaller problems. This decomposition approach never falls short of achieving a solution. 
Tang et al. (1991) provided an algorithm that divides problems utilizing time. Tang et al. (2006) presented an approach 
comprised of solving an upper problem and a lower problem. This approach was then applied to a manufacturing 
case-study. Hassan & Singh (1976) proposed an approach where some of the expression is supposed to be constant, 
afterwards this constant expression is calculated from another level. After applying his procedure, Hassan et al. (1978) 
was able to solve a very easy problem at the bottom level. While, Fawzy (1981) improved Hassan’s work and added 
an extra level to his algorithm. Sadati & Ramezani (2010) optimized their control problem utilizing the gradient 
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information. A procedure utilizing the gradient has also been used to solve other problems (Sadati & Babazadeh, 2006 
& Sadati & Ramezani, 2008). 

Much of the research on ATC has been concerned with improvement and extension of its formulation to improve 
the computational behavior. Dormohammadi & Rais-rohani (2013) used an exponential penalty function approach 
to solve hierarchical optimization problems. He then compared his method numerical efficiency to some other 
ATC algorithms. While, Wang et al. (2013) introduced two cutting plane methods to compute the dual variable. He 
reported comparable performance to the method of multipliers approach. On the other hand, Alexander et al. (2011) 
utilized artificial neural networks for ATC. Jung et al. (2018) proposed a formulation with parallelization that uses 
the subgradient method. In addition, a procedure for selecting the suitable step size was presented. Zhang et al. 
(2013) provided a procedure for managing the pareto set using a genetic algorithm. For this procedure, there is no 
need to select weights. Leverenz et al. (2016) introduced a multiparametric subgradient algorithm and compared the 
computational performance to another approach. He then improved a slow algorithm computational effort by utilizing 
fast function evaluations. While, the nonhierarchical approach of ATC delivered additional choices for coordination 
(Tosserams et al., 2010). Therefore, improving the numerical performance has been one of the main topics that has 
been selected by researchers. 

Even though many researchers have chosen to use ATC to solve a lot of different engineering problems, the 
design of controllers using ATC topic did not receive a lot of attention from authors. The first goal of this article is to 
decompose our nonlinear optimal control problem using the ATC formulation introduced by Tosserams (Tosserams et 
al., 2006), then solve it utilizing an optimization algorithm. The second goal of this article is to study the computational 
cost of ATC solving this nonlinear optimal control problem. This ATC computational cost could help future researchers 
on optimal control because these researchers could use this ATC cost for comparison with other ATC formulations. 
Another goal of this article is to investigate the relationship between the total solution time and some of the control 
parameters. Such a relationship should help engineering designers in choosing control parameters that have good total 
solution time.

Our aim in this article remains optimizing nonlinear control systems using the ATC approach. This ATC method 
is used to decompose the synchronous machine optimal control problem. We then utilize an SQP procedure which 
obtains an answer for this decomposed problem. We will start this article with a review of some of the preceding work 
on the ATC topic that we will be utilizing. Then we talk about the synchronous machine optimal control problem. After 
that we will utilize our knowledge of ATC to decompose this synchronous optimal control problem into a two-level 
structure. Then we will discuss the computational results and present our conclusions. 

PREVIOUS WORK ON ATC  

 The  means level and the  means element. A very important formula is the augmented Lagrangian function. 
The augmented Lagrangian function can be used with the universal problem to obtain the universal problem with 
augmented Lagrangian function. The universal ATC problem with augmented Lagrangian function for an element  
is stated as follows (Tosserams et al., 2006).

                                                                                       (1)
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                                           where         

and  is the local variables vector,  is the targets with the responses denoted by ,  is the 
children’s set,   symbolizes total ATC levels,  symbolizes ATC elements,  are the discrepancies, and 

 is the vector of discrepancies.
Then, the following expression has to be calculated

                                                                       (2)

   
     We should also evaluate the following expression

                                                                                               (3)

The ATC method with augmented Lagrangian function introduced by Tosserams et al. (2006) is used in this 
paper. 

OPTIMAL CONTROL OF A SYNCHRONOUS MACHINE

In this section, ATC ability in solving difficult problems is investigated by solving the synchronous machine 
optimal control problem. Several researchers have utilized this problem to investigate the performance of hierarchical 
control algorithms (Mukhopadhyay & Malik, 1972 & Singh & Hassan, 1977). The continuous-time model of the 
machine is a nonlinear model. Sadati & Ramezani (2010) discretized this nonlinear continuous-time synchronous 
machine model into a discrete-time nonlinear machine model with sampling period . The model that we will use in 
this paper is this discrete-time system. Therefore, the system we utilize can be written as

  
                              

                                                                      (4)

      

        (5)

                                     (6)

In addition, we can see that the parameter value is . The aim of the synchronous machine optimal control 
problem is to minimize the following performance index



289Sulaiman F. Alyaqout, and Anwar F. Alyaqout

                                                                                                (7)

Now this machine optimal control problem can be created by using the performance index in Equation (7) with 
the constraints in Equations (4), (5) and (6) of the discrete-time model. Therefore, this optimal control problem can 
be written as

          subject to 

                                                              (8)

  where                                  

OPTIMAL CONTROL OF ATC

Let us write this synchronous machine problem in Equation (8) in terms of the ATC formulation in Equation (1). 
We then decompose this optimal control problem in Equation (8) into a two-level structure using ATC. 

Now let us write this synchronous machine optimal control problem in terms of this two-level ATC structure as 
shown in Figure 1. The upper level problem has only one ATC subproblem . This upper level problem can be 
written as follows.

                                       where                                                    (9)
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Fig. 1. The two-level structure for the synchronous problem.

The lower level problem has two ATC subproblems  and . The constraints of subproblem  are Equation 
(4) and Equation (5) of the discrete-time model, while the constraint of subproblem   is Equation (6) of the discrete-
time model. Let us now see how the  and  have been created.  are located in both   and  

  with  managing, therefore they are linking variables. The    are also located in both  and 
  with  managing, therefore they are linking variables. On the other hand, the   are only located 

in  with  managing, therefore they are responses. Moreover, the   are only located in  with   
managing, therefore they are also responses. This lower level ATC subproblem  is stated as follows.

  
                                            

subject to

                                                  
                                                           (10)

                                           where                             

                                 

                                             ,  
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Note that the  in  are only located in , hence they are local variables. While, the lower 
level ATC subproblem  is stated as follows.

                                              subject to

            (11)

                                              where        

                                                                  
Note that the  in  is only located in , consequently they are local variables. The ATC subproblems 
,  and  are all solved using the fmincon optimization tool from MATLAB. This optimization tool employs an 

SQP algorithm (Papalambros & Wilde, 2000).

RESULTS AND DISCUSSIONS

Now we consider investigating efficiency for ATC synchronous machine problem in Equations (9), (10), and (11). 
Also, we investigate the relationship between the total solution time and some of the control parameters. The MATLAB 
program was used to obtain the numerical solution of this ATC synchronous machine optimal control problem.

To check the validity of the solution obtained using the MATLAB program, we compare our 
solution to the results obtained by Sadati & Ramezani (2010). The parameters for this Sadati case are 

 and  Using these parameters, the 
ATC synchronous machine optimal control problem was solved using MATLAB. Figure 2 shows the optimal rotor 
angle  versus time. 
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     Figure 3 shows the optimal speed deviation  versus time. The ATC responses in Figure 2 and Figure 3 are 
nearly identical to the optimal responses from Sadati & Ramezani (2010). The optimal field flux linkage  versus 
time is shown in Figure 4. The ATC response in this Figure 4 is very close to the Sadati response. The optimal control 
variable  versus time is shown in Figure 5. The ATC response in this Figure 5 is also nearly identical to the optimal 
response from Sadati. 
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To investigate the performance of the ATC optimal control problem, let us contrast the ATC problem with the 
performance from the control problem in Equation (8). The optimal ATC control objective is , while 
the optimal control problem is . Since  and  are very close, therefore the answer from ATC match 
very accurately to answer from optimal control problem. To achieve this, ATC performed 256 iterations between the 
upper and lower levels. The total solution time of ATC to reach the optimal solution is 943.33 seconds (or 15.722 
min). 

Let us now investigate the effect of changing the  control parameter on the accuracy of ATC. The parameters 
for this new case are , , , ,  ,  and . Using ATC, the 
optimal ATC control objective is  while the optimal control objective is  . Although  is 
different, ATC answer remains very accurate to optimal control answer. Figure 6 shows the optimal rotor angle and 
speed deviation responses. While, the field flux linkage and control variable responses are shown in Figure 7.
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Fig. 6. The optimal (a) rotor angle (b) and speed deviation versus time for  



Control of a nonlinear system utilizing analytical target cascading296

Fig. 7. The optimal (a) field flux linkage (b) and control variable versus time for
  .

     

Note that the control parameter  has been changed to investigate the accuracy of ATC. The result of this change 
is optimum ATC control objective with optimum control objective are always almost equal. Hence, one can conclude 
ATC answer match very accurately to optimal control answer. 

Relationship between the total solution time and the control parameter  is shown in Figure 8. Note that in this 
case  is varied, while the other parameters are , , . The data points were fitted with a polynomial 
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that had a degree equal to 5. One can notice that increasing the total solution time decreases the control parameter . 
Hence, as we increase the control parameter  the total solution time will decrease. 

Fig. 8. Relationship between the total solution time and control parameter   

The effect of the control parameter  on the total solution time is shown in Figure 9. Observe that in this case 
  is varied, while the other parameters are , , . A polynomial of a degree 5 is used to fit the 

data points. Looking at the fitted curve, we can conclude that the total solution time tends to increase as the control 
parameter  is increased. 



Control of a nonlinear system utilizing analytical target cascading298

Fig. 9. Relationship between the total solution time and control parameter  
 

 Figure 10 shows the total solution time versus the control parameter  Now in this final case  is varied, while 
, This is also fitted with a degree equal to 5. 

Looking at this curve, we can conclude that the total solution time tends to be lower on large .
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Fig. 10. Relationship between the total solution time and control parameter   

The effect of the control parameter  on the optimal ATC control objective   is shown in Figure 11. Note that 
in this case  is varied, while the other parameters are . The data points were fitted with a 
polynomial that had a degree equal to 1. We can notice that the optimal ATC control objective  tends to increase 
as the control parameter  is increased.
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Fig. 11. Relationship between the optimal ATC control objective and control parameter   

Figure 12 shows the relationship between the optimal field flux linkage and time for different values of the control 
parameter . Note that in this case  is varied, while the other parameters are . 
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Fig. 12. The optimal field flux linkage versus time for different control parameter   

CONCLUSION

This manuscript proposed a procedure that solved nonlinear optimal control problems utilizing ATC. A synchronous 
machine optimal control problem was divided into smaller problems and then coordinated utilizing this ATC scheme. 
A solution is then obtained for this coordinated machine optimal control problem using SQP. 

The performance associated with ATC is then studied. For our work, we demonstrated that the ATC optimal 
controller was very close to the optimal controller. In addition, nonlinear optimal control problems were successfully 
solved using the ATC formulation. Also, we investigated the computational cost of solving nonlinear optimal control 
problems utilizing ATC. We then studied the effect of some control parameters on total solution time. We noticed 
that the total solution time tended to decrease as the control parameter  tended to increase.  We also noticed that 
the total solution time tended to increase as the control parameter  tended to increase. Future work should consider 
investigating the performance of two additional ATC formulations. These two are the exponential penalty function 
formulation and the cutting plane methods formulation.
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