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ABSTRACT

With the economic development, transportation in the city becomes more crowded. Furthermore, fuel consumption
is causing a serious problem of pollution in the urban environment. Hybrid electric vehicles are considered as a
good solution compared to conventional internal combustion engine vehicles. In order to solve those problems,
the components parameters of a series hybrid electric vehicle are selected and tested with the ADvanced Vehlcle
SimulatOR (ADVISOR) simulation tool, which is a software-based on Matlab_simulink. Then, an optimisation was
done to minimise simultaneous fuel consumption and emissions (HC, CO, and NOx) of the vehicle engine. In addition,
the driving performance requirements are also examined during the urban dynamometer driving schedule (UDDS)
to fix their optimal control parameters. Finally, the results show that those steps help reduce fuel consumption and
emissions while guaranteeing vehicle performance. Hence, the series hybrid electric vehicle greatly improves fuel
economy and reduces toxic emissions.
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INTRODUCTION

The development of clean transportation with more fuel economy and fewer emissions is becoming mainstream
in the automotive company due to the crisis aggravation of the environmental problems and the energy in the word.
The internal combustion engines (ICEs) used in vehicles present various disadvantages that have harmful effects
on human, animal, and even plant health. Therefore, hybrid electric vehicle (HEV), which is a combination of a
conventional vehicle and electric vehicle, can be a solution. It allows reducing the ICE size and the fuel consumption
(FC), and it improves its efficiency compared to the conventional vehicle, as well as lowering the battery size as to
be used in electric vehicle. Moreover, HEVs do not need an external battery charge and new infrastructure; for this
reason, in recent years, many researchers have focused on this type of vehicle. These factors make HEV a viable
solution to reduce environmental pollution and oil depletion problems. Thus, hybrid technology is an important choice
for future cars (Cheng et al., 2017).

There are different types of HEVs; in this work, a series hybrid electric vehicle (SHEV) is considered. Thereafter,
drive train components and control strategy (CS) parameters of the SHEV are fixed using the simulator ADVISOR.
ADVISOR is a vehicle simulator, which can simulate different types of vehicles while acting on engine, electric motor,
accessories, driving cycles, etc. Likewise, it can calculate the energy consumption, emissions, and vehicle components
performance and evaluate the accuracy of the results at the same time. It can also control the energy management
of the vehicle. The vehicle is tested, and subsequently an optimisation of fuel consumption (FC) and emissions,
using the dividing rectangles algorithm (DIRECT) algorithm, is made. Since the dimensioning of SHEV power train


https://doi.org/10.36909/jer.v9i1.8366

152  Multiobjective optimisation of a series hybrid electric vehicle using DIRECT algorithm

components and their control strategy are closely related, a simultaneous optimisation is justified (Baumann et al.,
2000; Panday et al., 2014). The optimisation phase is considered as a multidisciplinary research work that examines
two main objectives such as reducing FC and limiting pollutant emissions (Yadav, 2019). An adjustment of the control
strategy parameters allows a better sizing of the power train components while satisfying the vehicle performance
constraints (Chris et al., 2011; Hao et al., 2016).

THE PROPOSED APPROCH FOR VEHICLE OPTIMISATION

In order to test the SHEV proposed in this work, the ADVISOR simulator is used. A fterwards, based on specifications
definite, the vehicle drivetrain component is auto-sized and identified while respecting the recommended performance
using ADVISOR. FC and emissions are evaluated and analysed over different driving cycles for two types of CS
mostly used for this type of vehicle. Subsequently, an optimisation of the SHEV is done using the DIRECT algorithm
to minimise the FC and limit the exhaust emissions (CO, HC, and NOx) and to ensure good driving performance.
During this optimisation, the parameters taken into account are the design parameters of the drive train, and parameters
related to the CS.

A strategy will be proposed, thus, allowing the coupling between the ADVISOR vehicle simulator and the
optimisation procedure based on DIRECT. Finally, simulation results will be presented and analysed for different
optimisation cases in order to specify the optimal SHEV.

The approach used is explained as presented in Figure 1: first, the vehicle is modelled in ADVISOR, and then this
model is integrated into a computational loop. The vehicle model with the initial value is simulated; and the value of
the objective function is found. Meanwhile, the constraints, which are the vehicle performances, are considered.

Evaluate objective
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Figure 1. The approach used to optimise the SHEV using ADVISOR.

Thereafter, the simulation results are fed back to the optimisation algorithm, which outputs a new value set of
design variables. Again, the vehicle is simulated to obtain the objective function value and the constraint functions
results. This loop keeps on until it reaches one of the stop criteria for the optimisation algorithm.

VEHICLE MODEL

SHEV is specified by good energy efficiency in all-electric mode, and a simple ICE control (Ben Halima et al.,
2018). The series architecture is closest to the all-electric vehicle, where the EM is directly connected to the wheels,
and it provides all the power. The selected SHEV power train, as shown in Figure 2, consisted of a downsized ICE, an
electric motor (EM) of traction, and a battery. A single EM propels the SHEV from two power sources either from the
ICE to the generator or from the battery (Krithika et al., 2017). So, the principle of energy transformation in this type
of hybrid electric vehicle is in series.

As the ICE has no mechanical connection to the transmission, it can be regulated to operate at its peak efficiency
point (Souffran, 2012). Therefore, the ICE is decoupled from the road load so that it will not undergo abrupt changes
in operating conditions and will have little time to idle, which reduces emissions.

The SHEV used in this work is described in Table 1.
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Figure 2. SHEV power train design.

Table 1. Design variable.

Description Symbol Values Unit
Calculated mass M, 1000 kg
Coefficient of rolling resistance Cy 0.015 /
Aerodynamic drag coefficient C, 0.4 /
Vehicle front area St 2 m2
Vehicle speed Vv Cycle m/s
Wind speed V., 0 m/s
Acceleration of gravity g 9.81 m/s2
Angle of the slope a 5 %
Air density p 1.28 kg/m3
Wheel radius Rivheel 0.26 m
Starting time (from 0 to30 km/h) ts 4 S
Vehicle maximum speed V max 100 km/h
Capacity of the battery cell Ceatl 6 Ah
Battery module number Modg 180 module

The SHEV should supply the necessary traction force to surmount resistive forces. The energy system is determined
by the vehicle power demand. The model that describes the dynamics of the vehicle allows calculating the energy
needed to move the vehicle.

Consider a vehicle, moving at a speed V on a slope angle a. The propulsive force for the displacement of the
vehicle called the traction force F, must withstand the rolling resistance F,;, the aerodynamic drag F,.,, the climbing
resistance force F,, and the acceleration force of the vehicle F, (Abdelmoula, 2018). Those forces are expressed in
Equations. 1, 2, 3, 4, and 5, respectively.
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Fy = Frr + Faero + Fp +F, (1)
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The wheels speed starts from zero until it reaches the base speed. During this phase, the traction motor applies a
constant starting torque on the wheels. From a base speed to the maximum speed of the vehicle, the motor exerts a
torque, which decreases proportionally to the motor speed (Abdelmoula et al., 2016). Figure 3 shows the torque as a
function of EM speed.
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Figure 3. EM torque as function of speed.

The torque and the power at the wheels are presented by the Equations 6 and 7, respectively (Chaieb, 2011).

Vp
Twheel = Ts V (6)
)
Puwheel = TSR_ ()
wheel

The vehicle must reach the base speed for a time t;, in this condition, and with neglecting the acrodynamic force
and the rolling friction force, the starting torque T, takes the following expression:

o-Mv RwheeIVb

Ts = Rwheel( t
s

+M, gsin(a)) (8)

CONTROL STRATEGY FOR SHEV

The CS is a compilation of algorithms in the controller of the vehicle that manipulates the energy flux between power
train components in an optimal way. A badly treated CS can lead to absurd results, with a similar consumption even
higher than that of equivalent conventional vehicle (Kermani, 2009). Hence, the presence of two source of energy in the
SHEV requires an efficient sharing of power between those different sources. Improving fuel economy with reduced
emissions of the SHEV depends on their CS. It makes it possible to choose the operating mode adopted for the vehicle.
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The CS determines at which torque and speed the ICE must operate, to generate electrical energy via the generator,
taking into account the conditions of the EM, the battery, and/or the ICE itself. Usually, such a strategy is designed to
minimise fuel use and emissions or maximise battery life (Brooker et al., 2002). Two popular CSs of SHEVSs, such as
thermostat control strategy (TCS) and power follower control strategy (PFCS), will be described later.

Thermostat control strategy

TCS is a simple and robust control system; it is the most conventional control strategy for SHEV, and it allows
a good fuel economy (Shabbir, 2015). The TCS relies on the ICE and the generator to provide the electrical energy
demanded by the vehicle. The ICE is used to maintain the charge in the battery. The power distribution in this strategy
depends essentially on the battery state of charge (SOC), as explained in Figure 4. The SOC value must be between
the upper SOC (cs_hi_soc) and lower SOC limits (cs_lo_soc) by turning on or off the ICE.

The operating principle of the TCS is explicated along these lines:
e The ICE turns on just when the SOC attains its inferior limit (cs_lo_soc).

e The ICE turns off just when the SOC reaches its high limit (cs_hi_soc); if its previous state was on, it goes off
after reaching the cs_hi soc, and it goes out.

e The ICE operates at its most efficient operating point.

ICE state
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Figure 4. Determination of ICE status (on / off) in TCS.

Power follower control strategy

The basic idea of the PFCS is to consider the genset (ICE + generator) as the main power source and the supervisory
control as the means of adjusting the output power of the genset to follow the vehicle driving power. The group is
active in almost all driving conditions, except in cases where low ICE power is required and the SOC is greater than
cs_hi_soc. The overall state of the genset control is based on Figure 5 (Gao et al., 2009).
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Figure 5. Determination of ICE status (on / off) in PFCS.
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The PFCS used for SHEV offers flexibility in the operation of the ICE as follows:
e The ICE can be disabled if the battery SOC is too high.

e The ICE can be activated again if the power required by the bus is high enough.
e The ICE can be activated again if the SOC is too low.

When the ICE is turned on, its output power tends to follow the power required by the bus, taking into account the
losses in the generator so that the power output of the generator matches the energy requirements of the bus.

For this study, the SHEV can be fuelled only using fuel; it cannot be recharged using the power grid. Hence,
the diminution of FC and gas emissions is essential. The FC and emissions can be evaluated using the ADVISOR
simulator. When evaluating the FC, SHEV must meet some additional conditions. In fact, the SOC measured at the
beginning and at the end of the cycle must be substantially equal. This condition ensures a zero-energy balance in the
energy storage system, to have consumption only from fuel (Rousseau, 2008). This correction routine, called zero
ASOC, adjusts the initial SOC until the execution of the simulation produces nearly zero in the tolerance band between
the initial and the final battery SOC of the mission (initial SOC-final SOC < 0.005). Hence, the routine will be run until
ASOC converges (Brooker et al., 2002).

Table 2 shows the FC and emissions of the SHEV in three driving cycles ECE_ EUDC_LOW, UDDS, and SCO3
in the case of both TCS and PFCS.

The results show that FC for TCS is lower than PFCS, while emissions are slightly higher. In addition, the ICE
operates at its most efficient point of load for the TCS strategy. Therefore, the TCS will be chosen later for the
SHEV.

Table 2. Fuel consumption and emissions of the SHEV.

Cycle Control Fuel consumption Emissions (g/km)

trat 1/100 k

sratesy (/100 km) HC co NOx
TCS 5.6 0.209 1.038 0.353
ECE_EUDC_LOW

PFCS 6 0.192 0.908 0.37

TCS 5.7 0.209 1.026 0.354
UDDS

PFCS 6.2 0.208 0.952 0.332

TCS 53 0.329 1.805 0.481
SCO3

PFCS 5.7 0.325 1.721 0.483

OPTIMISATION OF SHEV USING DIRECT ALGORITHM
Objective Function

When designing the SHEV, we aim for several simultaneous objectives such as minimizing FC and exhaust
emissions (HC, CO, and NOx) while ensuring driving performance requirements. Typical ICE operating points
indicate that minimum FC does not necessarily result in minimum emissions (Figure 6), which requires a compromise
solution (Montazeri Gh et al., 2006).
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Figure 6. Fuel consumption and emission (HC, CO, and NOx) maps based on torque and speed of ICE
Geo 1.0L 41 kW. (a) Fuel consumption; (b) HC; (c) CO; (d) NOx.

So, in this study, a multiobjective optimisation method based on weighting aggregation is used, which is the
simplest and most widely classical optimisation method used for solving multiobjective optimisation problems. In this
context, each objective function is multiplied by a weight and summed to form a composite objective function. The
weight of an objective function is usually chosen in proportion to their relative importance in the problem. However,
it is possible that the different objectives have different orders of magnitude. Thus, to set appropriate weight values
and make goals equally important, standardization of goals is needed (Desai, 2010). In this work, a multiobjective
optimisation is defined to minimise the FC and the exhaust emissions (CO, HC, and NOx). The objective function is
defined as follows (Desai, 2010; Janiaud, 2011):

F(x) = w;FC + w,HC + w3CO + w,NO, 9)

All partial functions are standardised. w;, w,, w; and w, are also defined as the weighting factors that are assigned
to each function.

Different optimisation cases are studied along the UDDS driving cycle. Table 3 shows the values of the weighting
factors used during the optimisation procedure.

Table 3. Weighting factors values used in multiobjective optimisations.

Optimisation wl w2 w3 w4
Case 1 0.7 0.1 0.1 0.1
Case 2 0.6 0.1 0.2 0.1
Case 3 0.5 0.1 0.3 0.1
Case 4 0.4 0.1 0.4 0.1
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Performance constraints

The constraints in some vehicle optimisation problems are inequality constraints, which derive from the limits
of the vehicle’s dynamic performance and the SOC variation. The SHEV must reach a certain speed in a given
time during an acceleration test. In addition, our vehicle must have a zero energy balance at the battery between the
beginning and the end of the cycle to stimulate the true FC and gas emissions values. The performance of the SHEV
to be optimised is shown in Table 4.

Table 4. Performance constraints used in multiobjective optimisations.

¢ The acceleration time from 0 to 30 km /his<4s
¢ The acceleration time from 0 to 100 km /his <38.2 s

* The slope is 5% at 50 km/h for an initial SOC=80%
and a final SOC > 40%.

» Difference between the requested speed of the
Constraint 3: Trace miss driving cycle and the speed reached by the vehicle
every second is <3.2 km/ h.

Constraint 1: Acceleration time

Constraint 2: Grad ability

* The difference between the final state of charge and

Constraint 4: SOC balancing the initial state of charge ASOC is < 0.5%.

Optimisation parameters

Optimisation of SHEV involves many design variables, and it is awkward to optimise all of them. In this work,
only the main powertrain components and CS system parameters that have important impacts on the performance of
the vehicle are taken into account. Eight parameters were considered: four design parameters of the drive train and
four parameters related to the CS. The description of these variables with their lower and upper bounds is presented
in Table 5.

Table S. Optimisation parameters description.

. . Lower Upper
Design parameters Description bound b(flf)n d
mc_trq_scale Motor Controller torque scaling factor 0.8 1.5
fc_trq_scale Fuel converter torque scaling factor 0.32 0.6
gc_trq_scale Generator Controller torque scaling factor 0.28 0.84

ess_module_num | Energy Storage System module number 170 190
e =
cs_hi_soc highest desired battery state of charge 0.6 0.9
cs_lo_soc lowest desired battery state of charge 0.3 0.5
cs_max_pwr (W) |cs max pwr*fc spd scale*fc trq scale is the maximum 20503 51 41007
power commanded of the fuel converter unless SOC<cs_lo_soc
cs_min_pwr (W) |cs min_pwr*fc_spd scale*fc_trq scale is the minimum power 10251 75 20503.51
commanded of the fuel converter

The objective of this work is to optimise a SHEV in order to decrease the FC and emissions on an urban driving
cycle UDDS (Figure 7). The basic configuration of the SHEV used for the simulation is given in Table 6.
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Figure 7. UDDS Cycle.
Table 6. SHEV configuration.
Variables values
mc_trq_scale 1
MSAP mc_spd_scale 1
Max power (kW) 21.5
Max speed (RPM) 6121
fc_trq scale 0.4
ICE fc_spd scale 1
Max power (kW) 16
Max speed (RPM) 5700
gc_trq scale 0.56
gc_spd scale 0.857
Generator
Max power (kW) 16
Max speed (RPM) 6000
ess_module_num 180
Battery ess_cap_scale |
capacity (Ah) 6

Application of DIRECT algorithm

The DIRECT algorithm was developed by Donald R. Jones (Jones, 2001). This algorithm represents Lipschitzian
optimisation with the elimination of the Lipschitz constant.

This algorithm does not use derivatives. Other algorithms that do not use derivatives can be mentioned such as
simulated annealing (SA), genetic algorithm (GA), and particle swarm optimisation (PSO). These types of algorithm
are often the best global algorithms because they cover the entire design space (Deb, 2001; Chris et al., 2011; Zhang
et al., 2011). In several research studies, GA is most commonly used to optimise HEVs (Montazeri-Gh et al., 2006;
Varesi et al., 2011; Jun et al., 2014; Panday et al., 2016). The PSO algorithm has also been exploited to optimise
control parameters and to minimise FC (Wu et al., 2008; Chen et al., 2015; Xiong et al., 2015). Other works have
optimised the HEV design parameters and control strategy using the DIRECT algorithm (Rousseau et al., 2007;
Panday et al., 2014; Borthakur et al., 2018). Keith Wipke agrees that the DIRECT algorithm is the best algorithm
without a derivative to find the optimal overall solution. In this context, Chris and Wipke applied the DIRECT method
to overcome the limitation of gradient methods; they concluded that nonderivative methods are more effective than
gradient-based methods (Wipke et al., 2001; Chris et al., 2011). In this study, the DIRECT algorithm was used. This
choice was made because DIRECT is dedicated for global optimization, and it focuses on stability and accuracy,
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which is suitable for optimising models of complex vehicles, including SHEVs (Jones, 2001). It covers the entire
design space while using the sample information to decide the search direction (Chris et al., 2011). This algorithm is
suitable for difficult optimisation problems with related constraints and real values objective function.

DIRECT algorithm has many strong points. In fact, this algorithm is a black-box, so the need to assuming the
gradients’ availability and information about objective function is not necessary. Further, it guarantees finding the
global minimum when the fitness function is continuous. Moreover, DIRECT is a deterministic algorithm, so it can
find the optimal results with only one run. The DIRECT algorithm uses a pattern of hyperdimensional adaptive mesh
to search the entire design space in order to find the optimum. Three first iterations of a 2D DIRECT optimisation
problem are presented in Figure 8 (Gao et al., 2005). Dark rectangles are the rectangles selected as optimal for division
in this iteration. DIRECT makes effective compromise by choosing the right lower convex hull (Finkel et al., 2010).
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RECTANGLES OPTIMAUX
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L
. - - - .
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L ]
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Figure 8. First three iterations of the 2D DIRECT algorithm.

The optimising procedure of the DIRECT algorithm is presented in Figure 9. First, the algorithm starts with an
evaluation of the objective function at the central point of the first hyper-rectangle that represents the whole domain,
and it considered as an initial objective function. Secondly, the program chooses a potential optimal hyperrectangle
and divides it into three equal regions. Then, the objective function is calculated at the centre of each region. After
that, the algorithm compares them with the minimum value collected in the last iteration. If this value is lower than
that of the previous objective function, the latter is updated and stored; besides, the potential optimal hyperrectangle
is updated. The optimisation using DIRECT algorithm will stop only when the maximum number of the evaluated
function or the maximum number of iterations is reached (Hao et al., 2016).
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Figure 9. Optimisation process of DIRECT algorithm.

SIMULATION CASE AND RESULTS ANALYSIS

The algorithm DIRECT is looped with ADVISOR, and the optimisation problem is done. A decrease in the FC and
emissions was observed in the four optimisation cases. Figure 10 shows the behaviour of the objective function for the

four optimisation cases under UDDS driving cycle.
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Figure 10. Objective functions for optimisation cases.
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Table 7 and Figure 11 summarise values of the objective functions, the optimal design parameters, and the
performance criteria for different optimisation cases.

A decrease in the FC and emissions in the four optimisation cases compared to preoptimisation values is clear. The
acceleration times obtained during the optimisation respect the constraints already fixed. The constraint ASOC<0.5%
is true only in the first and the second optimisation cases. Furthermore, according to Figure 10, the vehicle has
followed the UDDS driving cycle in all the optimisation cases, because the difference between the required and the
reached speed during the four optimisation cases does not exceed 2 mph. To summarize, the results found confirmed
the satisfaction of driving performance only for the two first optimisation cases. To explain the four optimisation cases,
each case will be analysed severely afterwards, drawing on Figure 11 and Table 7:

e For the first case of optimisation, the objective function shows a decrease, which leads to a decrease in FC and
emissions; moreover, the performance constraints are satisfied.

e For the second case of optimisation, the objective function presents a decrease, and therefore a decrease in the
FC and emissions, and the performance constraints are also satisfied.

e For the third case of optimisation, it is clear that the objective function presents a minimisation, but the
constraints are not all satisfied; indeed, ASOC = 0.505%, whereas the constraint requires that ASOC<0.5%.

o Inthe same way, for the fourth, certainly, the objective functions are to minimise, but the constraint ASOC<0.5%
is not right; in fact, ASOC = 0.645%.
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Figure 11. Difference between required and achieved speed for different optimisation cases.
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Items Initial value 1 2 3 4
Objective function -- 0.911 0.856 0.833 0.834
o Fuel (/100 km) 5.7 53 5.4 53 5.4
:gi HC 0.209 0.182 0.171 0.174 0.188
8 (6{0) 1.026 0.808 0.735 0.682 0.706
NOx 0.354 0.249 0.219 0.232 0.238
mc_trq_scale/ Pgy (kW) 1/21.5 1.12/24 1.175/25 1.072/23 1.046/22
fc_trq_scale / Picg (kW) 0.4/16 0.337/14 0.327/13.5 0.327/13.5 0.358/15
gc_trq_scale / Pg (kW) 0.56/16 0.377/11 0.356/10 0.377/11 0.377/11
g ess_module_num 180 181.5 186.5 172.5 172.5
E cs_min_pwr (W) 20503.51 17276 15377 14998 13859
cs_max_pwr (W) 20503.51 37590 39868 36830 36071
cs_lo_soc 0.4 0.444 0.459 0.363 0.355
cs_hi_soc 0.8 0.827 0.75 0.75 0.75
. t 4 3.5 3.4 3.6 3.8
% t; 38.2 30.5 28.4 31.7 342
% Grade 12.2 14.1 14.8 13.9 13.1
- ASOC 0.5 0.5 0.5 0.505 0.645

For the first and the second optimisation cases, if we favour the minimisation of the FC of our SHEV compared
to the limitation of emissions, then the choice will be focused on the first case of multiobjective optimisation. And
if we favour the minimisation of emissions in relation to FC, then the choice will be focused on the second case of
multiobjective optimisation.

Optimisations are applied on UDDS cycle, in which its distance is 11.99 km. To visualize the battery charge and
discharge history, the optimised SHEV for the first and second optimisation cases were tested over twenty UDDS
cycles, as presented in Figure 12.

The first optimisation case allows for a slower battery charge and discharge compared to the vehicle before
optimisation, which increases the battery life, while, in the second case of optimisation, the minimum battery SOC
exceeds 40%, which allows a fast destruction of the battery. So, the first case of optimisation seems more effective for
long distances as optimal SHEV. The results are very encouraging, which allows the vehicle designer to choose the
optimal sizing of the SHEV drivetrain and to identify the optimal parameters of the control strategy.
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Figure 12. Battery state of charge history (during 20 UDDS cycles).

OPTIMAL SHEV

Figure 13 shows the history of the first case of multiobjective optimisation that is chosen as the optimal vehicle.
The evolution of the optimisation variables, the constraints, and the standardized value of the objective function are
represented.

Table 8 defines the main characteristics of the power components, as well as the TCS parameters of the optimal
SHEV. The latter is characterized by a permanent magnet synchronous motor with 24 kW maximum powers, an ICE
of 14 kW power, and a generator of 11kW. And even the mass of the vehicle slightly decreased from 1000 kg before
optimisation to 994 kg after the optimisation. The performance of the new SHEV is better than the vehicle before
optimisation since the power of the EM has increased.
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Figure 13. Simulation history of the first case of multiobjective optimisation.
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Table 8. SHEV configuration.
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Design parameters Initial Optimal
Max power (kW) 21.5 24
EM Max torque (Nm) 111.45 124.8
Max speed (tr/min) 6121.34 6121.34
Max efficiency 0.97 0.97
Max power (kW) 16 14
ICE Max torque (Nm) 32.5 27.26
Max speed (tr/min) 5700 5700
Max efficiency 0.34 0.34
Max power (kW) 16 11
Generator Max torque (Nm) 58.75 21.8
Max speed (tr/min) 5000 5000
Max efficiency 0.9 0.9
Module number 180 181.5
Battery Cellule capacity (Ah) 6 6
Cellule number by module 3 3
Control strategy parameters Initial Optimal
cs_hi soc 0.8 0.827
cs_lo _soc 0.4 0.444
cs_min_pwr (W) 20503.515 17276
cs_max_pwr (W) 20503.515 37590

Table 9 represents the gain in FC and pollutant emissions of the optimal SHEV compared to the SHEV before
optimisation.

Table 9. Gain in fuel consumption and pollutant emissions of the optimal SHEV compared to the
SHEV before optimisation.

Before optimisation Optimal Gain
FC (1/100 km) 5.7 5.3 57%
HC 0.209 0.182 12.91%
Emissions |, 1.026 0.808 21.24%
(g/km)
NOx 0.354 0.249 29.66%

Figure 14 shows the ICE efficiency map and the maximum generator torque for SHEV before optimisation and
for optimal SHEV. The maximum torque of the generator is decreased so that it is close to the maximum yield line of

the ICE.
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Figure 14. ICE efficiency map and generator maximum torque (a) for SHEV before optimisation and
(b) for optimal SHEV along UDDS cycle.

CONCLUSION

In this study, DIRECT is used to optimise the FC and emissions while keeping a good command of the control strategy
parameters and adjusting the power train components of SHEV. DIRECT was chosen because it is a deterministic,
global, and without gradient algorithm, which is suitable for the vehicle optimisation problem. ADVISOR is used
and combined with the fitness function to effectively evaluate the FC and emissions (HC, CO, and NOx) of the ICE.
Furthermore, the driving performance requirements were satisfied. By applying the weighting aggregation method,
four multiobjective optimisation cases were initiated using ADVISOR to simultaneously minimise FC and emissions
while satisfying driving performance requirements. The results indicate that DIRECT algorithm helps improve the FC
and reduce the emissions, as well as guarantee vehicle performance. Finally, the optimisation phase makes the SHEV
more efficient, less polluting, and uses less fuel.

Obviously, the ponderation factors could be optimised, in future works, since they have an influence on the results.
Also, it could be interesting to optimise the SHEV using other algorithms such as GA in order to confirm results.
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