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ABSTRACT
The aim of this study is to present a general model with variable coefficients corresponding to some structural 

elements such as beam, string, bar, and rod. To solve general model with variable coefficients, a different solution 
procedure combining a method of multiple scales (MMS) and a finite difference method (FDM) is presented in this 
study. This technique provides an advantage in the numerical solution of the structural element model containing any 
discontinuity and in its dynamical analysis by perturbation method. Furthermore, two problems including discontinuity 
are considered to show the accuracy of the method presented. The comparisons of the numerical results obtained from 
the proposed method and classical method are introduced.

Keywords: General model; Method of multiple scales; Finite differences method; Singularity function; 
Discontinuous beams. 

INTRODUCTION
Many engineering structures consist of the structural elements involving some discontinuities. The dynamic 

modelling of these structures leads to a set of partial differential equations (PDE). Generally, the mathematical models 
of this type do not contain the discontinuous functions such as Dirac delta and Heaviside step function; therefore, it 
can be solved analytically in a linear case. The same structures may be modeled by single differential equation instead 
of a set of equations when the system has discontinuities. In this case, a numerical method is needed in analyzing the 
model including singularity function. 

Recently, Dinev (2012) has suggested an approach for analytical solution of the problem of bending a beam 
on an elastic foundation using singularity functions. Caddemi and Morassi (2013) proposed a verification of the 
rotational elastic spring model of an open crack formulated by suitable Dirac’s Delta functions in a beam in bending 
deformation. Caddemi et al. (2013a) presented the closed-form solutions of the Timoshenko beam model subject to 
internal singularities leading to deflection and rotation discontinuities. Besides, a model of the stepped Timoshenko 
beam under deflection and rotation discontinuities that adopted Heaviside’s and Dirac’s Delta functions along the 
span was suggested by Caddemi et al. (2013b). For static and vibration analyses of stepped beam using singularity 
functions, Cheng et al. (2014) introduced a systematic approach, which is performed by directly differentiating the 
analytical deflection function with respect to any beam-related design variable.

In this study, a general model corresponding to the structural elements with different discontinuities is introduced. 
The general solution procedure is more effective instead of solving each problem, separately. For this purpose, many 
researchers (Lacarbonara, 1999, Hosseini & Zamanian, 2013, Ghayesh et al., 2012) have introduced some general 
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models with operator notations, which are suitable for perturbation calculations. A different approach is presented 
to solve the general model proposed in this study. This approach has the advantages of the numerical method in the 
discontinuity case, as well as the perturbation technique in the dynamical analysis. The mathematical model of the 
problem containing discontinuity can be derived in two different ways. First, the system is separated from each point 
including discontinuity, and the equation is separately written for each part. Thus, the number M + 1 of equation is 
written, where the number of discontinuities equals M. The total number of boundary and transient conditions is 
4×(M + 1). Applying these conditions, the system of the linear algebraic equations is obtained as four times of span 
numbers. It is almost impossible to solve such a system for the large numbers M. Second, instead of a set of equations, 
the problem can be modeled by one equation including singularity function. Firstly, the MMS is directly applied to the 
equation having singularity function. At the first order, a linear equation is obtained. Substituting the assumption of 
first order into the equation yields an ordinary differential equation having singularity function. Since the solution of 
the differential equation with the singularity function is difficult to obtain analytically, numerical methods are needed. 
For this purpose, the finite difference method is used in this study. 

GOVERNING EQUATION
The general structural dynamic model (Sınır, 2015) including harmonically internal and external excitations is

                                             
(1)

 and                                                                        (2)

where  y(x, t ) is the transverse deflection, x is an axis, which denotes direction of the structure element, and t is 
the time variable, and F(x) is the amplitude of external force.  and  correspond to parametric 
excitation and harmonically external force, respectively.  and  are the frequencies of the internal and external 
excitation, respectively. ε is a small dimensionless parameter. The dot represents differentiation with respect to time 
t. The subscripts of i,  j at boundary conditions represent jth condition of the ith support for Bij. a(x) is the arbitrary 
function representing the variation of the mass and cross section. L1 is related to stiffness structural elements. L3 
represents viscoelastic properties of the system. a(x) and the operator L1 may contain the singularity function to 
define discontinuities of one-dimensional structure (such as crack, stepped beam, or multisupport). L1, L2 and L3 are 
linear and self-adjoint differential operators having variable coefficients. The differential operator L having variable 
coefficients can be demonstrated as 

where the highest derivative is denoted by fourth order since the mathematical model of the beams as structural 
elements is considered (L1, L2 and  L3 can be in form of the operator L). The space domain is considered as [0,1]. Also, 
these linear operators correspond to the other one-dimensional structural element such as bar, string, and cable. For 
example, p3 and p4 vanish for a bar or string structure element.

METHOD OF MULTIPLE SCALES
In this section, MMS is directly applied to the governing equation. Perturbation series expansion is assumed as

                                                      (3)

where Tn is different time scales in form of . The time derivatives in terms of the new time scales are 
defined by
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      and                                  (4)

where . Substituting Eqs. (3-4) into Eq. (1-2) and separating terms at each order ε yield

                                                                                            (5)       

 and                                                                  (6)

                        
(7)

  and                                                    (8)

 The solution at first order is assumed as

                                    (9)

where An is the complex amplitude. Substituting Eq. (9) into Eq. (5), the relation in the following is obtained.

                                                                                                     
(10)

Eq. (10) can be called as an eigenvalue-eigenfunction problem. ωn represents the eigenvalues, and Xn corresponds to 
eigenfunctions of the system. From Eqs. (10), Xn and ωn can be calculated. Since the resulting equation is the ordinary 
differential equation with variable coefficient, finite differences method is used for the approximate solution.

FINITE DIFFERENCES METHOD
For finite differences method, there are three different finite differences schemes: forward differences, backward 

differences, and central differences. For small truncation error, the central difference is chosen. Then, first four 
derivatives are given as follows:

    and                                                          (11.a)

 and            (11.b)

where . N is the total number of short segments into system. In these discretized forms, the subscript 
indicates spatial node. Substituting Eq. (11) into Eq. (10) yields the discretized equation at jth spatial node as 

                                                  
(12)

where 

, ,             (13.a)

,                                                       (13.b)
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The boundary conditions are 

, , , ,                  (14)

, , , ,    (15)

, , ,                   (16)

for pinned-pinned (PP) support, clamped-clamped (CC) support, and pinned-clamped (PC) support, respectively. 
Using boundary conditions, Eq. (12) yields the algebraic equation system. In this study, the algebraic equations 
system in matrix form is given for PP, CC, and PC support conditions. Finite differences applications of the boundary 
conditions are as follows:

, , ,                   (17)

, , ,                     (18)

, , ,                                  (19)

for PP, CC, and PC support, respectively. Using the boundary conditions (17) and the relations (12-13), the algebraic 
equation system can be written in the following matrix form:
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(20)

Similarly, the other algebraic equation systems for CC and PC can be obtained. The determinant of the matrices 
of the coefficients (20) must be equal to zero for nontrivial solutions. The mode shapes Xn are obtained depending on 
the node N / 2. Thus, y0 is determined from the solution of Eq. (5). For the solution of ε -order, substituting Eq. (9) 
into Eq. (7) yields

                 

(21)

where cc denotes complex conjugates. The solution of Eq. (21) can be considered as

                                (22)

where the first and second terms are related to secular and nonsecular terms, respectively. The term related to force 
is either secular or nonsecular term depending on its frequency. 
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CASE STUDIES
Applying solvability conditions (Nayfeh, 1981), some definite integrals including mode shapes Xn and its 

derivatives are obtained in the form of

                                                                                                            
(23)

where only numerical values of Xn exist. In the approximate calculation of integrals from the solvability condition, 
Simpson’s method, one of the numerical integration rules, was used. The formula of Simpson’s method is given as

                        (24)

where N is the number of subintervals, Δx is the step length (Δx = 1 / N ), and the function fj corresponds to

             

(25)

Ω1 AWAY FROM  0 AND 2ωn, Ω2 AWAY FROM ωn

Substituting Eq. (9) into Eq. (7) and eliminating the terms producing secularity yield the equation in the 
following:

                                               (26)

The solvability condition requires (see reference (Nayfeh, 1981) for calculating in detailed)

                                                                                                                (27)

where the normalization is , and the coefficient  is .

Then, An is obtained from Eq. (27) as follows:

                                                                                                                        (28)

where C is an arbitrary constant, and  is always real and positive. Then, the amplitude of the system exponentially 
decreases, and the solution is stable.

Ω1 CLOSE TO 0, Ω2 AWAY FROM ωn

In this case,  and  are assumed, where the detuning parameter  is used to describe the nearness Ω1 
to 0. Then, . Similarly, the solvability condition is obtained as follows:

                                                                                     
(29)

where . From the solution of Eq. (29), the amplitude is found as
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.                                                                                                      (30)

The term  leads to diminish the amplitude. Since , the complex amplitudes are bounded in time. 
However, this order of approximation has not got any instability.

Ω1 CLOSED TO 2ωn, Ω2 AWAY FROM ωn

The excitation frequency has the variation around two times of the natural frequencies such that , 
where  is the detuning parameter. Thus, one obtains 

.                                                                          (31)

The polar form of An is assumed as

                                                                                                            (32)

Substituting Eq. (32) into Eq. (31) and separating real and imaginary parts of the resulting equation yield

                                                                                              (33)

                                                                                                     (34)

where . Since  and  should be equal to zero for steady state solutions, the detuning 
parameter is obtained as

.                                                                                                      (35)

Ω2 CLOSED TO ωn, Ω1 AWAY FROM 2ωn AND 0
For , the amplitude equation is obtained as follows:

                                                                                                    (36)

where . Substituting Eq. (32) into Eq. (36) and separating real and imaginary parts, the 

resulting equation is 

                                                                                                    (37)

                                                                                                     (38)

where . Thus,  is found as 

                                                                                                        (39)

considering  and  equal to zero for the steady state solutions.
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BEAMS WITH MULTIPLE SPAN UNDER VERTICAL SPRING-SUPPORT 
SUBJECTED TO PARAMETRIC AXIAL FORCE

In this section, the beam having linear elastic spring at internal support (Sınır & Sınır, 2011) is considered. The 
equation of motion involving a singularity function for the number M of linear elastic spring is presented as follows:

                                               
(40)

and boundary conditions

 and                        (41)

where E and I are the modulus of elasticity and the moment of inertia, respectively. m denotes the mass per unit 
length.  is the linear viscous damping coefficient. L describes the distance apart between two simple supports.  
is axially harmonic compressed by a loading such that , where ε is a small dimensionless parameter. 
 represents the spring constant. δ denotes Dirac delta function corresponding to singularity function  (Lect. 

12). The singularity functions are used to calculate deflections of beams with various loading and support conditions. 
Introducing the dimensionless terms for Eq. (40-41)

 and 
 

,                     (42)

the resulting equation is obtained as

                                                                                (43)

 and .                       (44)

In this section, the dynamic response of elastic beam with one spring is analyzed for two spans. For M = 1, the 
resulting equation (43) becomes

 .                                                                            (45) 

Thus, the operators given in the general model are as follows:

,  ,  , ,                       (46)          

Substituting these terms to Eq. (10), one obtains

                                                                                   (47)

  and                                                (48)

Then, the coefficients (13) according to Eq. (47) are as follows:

     (49)

.                                                                                   (50)  
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 Here, all values except b2, j are constant for each the value of j. We substitute the coefficients (49,50) into 
the matrix (20). For nontrivial solution, the determinant of matrix of the coefficients should be equal to zero. Using 
this condition, the natural frequency of the system can be approximately found. The mode shape is also numerically 
obtained. Proceeding the perturbative solution, cases 1, 2, and 3 reveal this problem. Then, the coefficients  and  
become

 and                      (51)

For calculating definite integral in the coefficient , Simpson’s method is used. Then, the function fj in the 
integral (51) is 

.                    (52)

Comparing the obtained results, the same problem can be written as a set of equations of motions. Writing the 
equation in this form yields

                                                                                                        (53)

                                                                                                       (54)

with the boundary conditions  and  and the transient conditions 
 and .                                                                     

Figure 1. The elastic beam with one spring and two spans.

In Sınır & Sınır (2011), the coefficient  is calculated as

.                     (55)

The comparison of the values of critical axially loading obtained for the coefficient of spring k and the location 
of spring  is given in the Table 1, where N denotes the number of grid points in the expansion of finite differences. 
Similarly, the values of the natural frequencies for the various locations of spring are given in Table 2.

Table 1. The comparison of axially critical loading obtained with Sınır & Sınır (2011) and the present method 
(bold) for N = 200.

k η = 100 η = 1000

0.1 11.6355 11.6353 18.6836 18.6820

0.3 20.4587 20.4582 30.7234 30.7207

0.5 29.2960 29.2957 39.4784 39.4752
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Table 2. The comparison of the natural frequencies obtained with Sınır & Sınır (2011) and the present method 
(bold) for P0 = 10 and N = 200.

k η = 100 η = 1000

0.1 4.0239 4.0236 9.7712 9.7702

0.3 10.4605 10.4602 19.5262 19.5244

0.5 13.8591 13.8587 34.1140 34.1107

Table 3. The comparison of the coefficients  obtained with Sınır & Sınır (2011) and the present method 
(bold) for P0 = 10, P1 = 1 and N = 200.

k η = 100 η = 1000

0.1 -0.6150 -0.6150 -0.2778 -0.2769

0.3 -0.2466 -0.2467 -0.2212 -0.2295

0.5 -0.1792 -0.1792 -0.0984 -0.0967

Table 3 shows that the results obtained with classical method and finite differences are close to each other. It is seen 
that the numerical results and analytical solutions are almost the same. 

THE BEAM-MASS SYSTEM
A beam-mass system consists of the Euler-Bernoulli beam and a concentrated mass on this beam. The equation of 

motion (Özkaya et al., 1997) according to proposed technique can be written as follows:

                            
(56)

 and .                   (57)

where ρ is the density, and A is the cross-sectional area.  represents the concentrated mass. ,  and  denote 
viscous damping coefficient, the external excitation amplitude, and frequency. Introducing the dimensionless 
parameters

                                                        (58)

,                 (59)

then, the resulting equation is

                                                               (60)

 and .                                    (61)

where α is the ratio of the concentrated mass to the beam-mass. The operators corresponding to the general model 
are 

, , , , ,        (62)
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Then, Eq. (10) is obtained as

                                               (63)

  and .                                              (64)

The coefficients (13) from Eq. (63) are obtained as follows:

                        (65.a)

                                                                                            (65.b) 

Substituting the coefficients (63) to the matrix (20), the solution of the resulting matrix is smoothly obtained. Thus, 
the natural frequency of the system and the mode shape can be calculated. Cases 1 and 4 appear in this problem from 
the perturbative solution. Then, the coefficients α3n and α1n are as follows:

 and                      (66)

The linear form of the mathematical models in (Özkaya et al., 1997 & Özkaya, 2001) is similar to the proposed 
equation in this study. In the result of performed calculations, the numerical comparisons are given in the following. 

Table 4. The first three natural frequencies for different mass ratios and mass locations for one mass, 
where N = 100.

α η ω1                            Özk.97 ω2 Özk.97 ω3 Özk.97

1 0.0 9.8688        9.8695 39.4654      39.4784 88.7607      88.8264

0.1 8.9954        8.9962 29.8755       29.8891 66.0088      66.0691

0.2 7.4533        7.4541 26.9359      26.9462 73.4569      73.5140

0.3 6.3941        6.3946 29.7397      29.7503 86.6638      86.7293

0.4 5.8463        5.8468 35.2250      35.2374 79.9135      79.9788

0.5 5.6791        5.6795 39.4654      39.4784 67.8305      67.8883

10 0.0 9.8688        9.8695 39.4654      39.4785 88.7607      88.8264

0.1 5.3312        5.3322 19.8249      19.8959 59.0482      59.0995

0.2 3.2594        3.2598 22.0495      22.0545 70.7174      70.7723

0.3 2.5276        2.5279 26.7608      26.7706 86.0802      86.1462

0.4 2.2250        2.2252 33.6682      33.6806 77.2029      77.2690

0.5 2.1393        2.1395 39.4654      39.4785 62.3954      62.4517
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Table 5. The natural frequencies corresponding to different mass ratios and mass locations for two masses, 
where N = 100.

α1 α2 η1 η2 ω1 Özk.01 ω2 Özk.01 ω3 Özk.01 ω4 Özk.01

1 1 0.1 0.3 6.118 6.118 27.536 26.506 55.338 55.412 98.966 99.097

0.7 6.183 6.183 22.588 22.598 60.165 60.226 124.852 125.021

0.5 0.3 4.730 4.785 25.116 19.802 60.830 45.252 141.073 95.238

0.7 4.730 4.730 25.116 25.128 60.830 60.883 141.073 141.289

1 10 0.1 0.3 2.509 2.509 26.066 26.075 50.993 51.069 94.388 94.505

0.7 2.516 2.516 20.052 20.060 58.763 58.824 124.117 124.285

0.5 0.7 2.387 2.387 17.916 17.925 59.518 59.569 136.776 136.993

10 1 0.1 0.3 4.513 4.514 18.548 18.563 38.536 38.578 96.578 96.694

0.7 4.671 4.671 12.423 12.429 50.941 50.992 121.270 121.432

0.5 0.7 2.078 2.078 22.025 22.036 54.599 54.647 140.648 140.866

10 10 0.1 0.3 2.356 2.357 16.238 16.257 29.949 29.975 92.758 92.863

0.7 2.412 2.413 8.845 8.850 48.883 48.883 120.858 121.018

0.5 0.7 1.677 1.677 9.806 9.812 53.472 53.516 136.317 136.535

Table 6. The natural frequencies corresponding to different mass ratios and mass locations for three masses, 
where  N = 100. 

α1 α2 α3 η1 η2 η3 ω1 Özk.01 ω2 Özk.01 ω3 Özk.01 ω4 Özk.01

1 1 1 0.1 0.4 0.8 5.130 5.130 18.908 18.915 40.627 40.668 101.805 101.949

1 1 10 0.1 0.4 0.8 3.011 3.011 11.726 11.731 39.407 39.445 98.570 98.713

1 10 1 0.1 0.4 0.8 2.182 2.182 17.179 17.186 37.318 37.356 99.182 99.323

10 1 1 0.1 0.4 0.8 4.141 4.142 13.012 13.021 25.934 25.958 99.303 99.439

10 10 10 0.1 0.4 0.8 1.864 1.864 6.672 6.675 14.144 14.161 93.644 93.774

1 1 1 0.2 0.5 0.7 4.411 4.411 18.193 18.201 39.151 39.189 137.782 137.980

1 1 10 0.2 0.5 0.7 2.350 2.350 13.463 13.469 34.966 35.001 134.570 134.770

1 10 1 0.2 0.5 0.7 2.048 2.048 18.178 18.185 29.348 29.378 137.760 137.958

10 1 1 0.2 0.5 0.7 2.857 2.857 10.767 10.771 35.346 35.379 137.078 137.274

10 10 10 0.2 0.5 0.7 1.540 1.540 6.381 6.383 13.564 13.578 134.055 134.252

As shown in Table 4, the numerical results obtained for the natural frequencies are extremely close to analytical 
results. Similar findings are presented in Table 5 for two concentrated masses and in Table 6 for three masses. 
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CONCLUSIONS
In this study, a general model is considered to analyze the dynamic behavior of structural elements that may have 

variable material, cross-section, or some other discontinuities. Unlike the classical approach, instead of writing a 
separate equation for each span containing discontinuity, a single equation with singularity function is discussed. This 
provides great convenience to us in the solution, as all discontinuities occurring in any structural element are modeled 
with a single equation. To demonstrate the accuracy of the present technique, the general solution procedure has been 
applied to two different problems, such as the multilinear elastic spring beam and beam-mass system. As a result of 
the comparisons made, it has been observed that the results obtained as a result of applying the classical approach and 
the present method are extremely close to each other.
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