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ABSTRACT
The nonlinearity issue is one of the promising fields in the engineering area. Particularly, the geometric nonlinearity 

bears big importance for the structural systems showing a tendency of larger deflection. In order to obtain a correct 
load-deflection relation for the structural system subjected to any external load, an advanced incremental-iterative based 
approach has to be utilized in the analysis of nonlinear responses. Arc length method has been proven to be the most perfect 
one among the nonlinear analysis approaches. Thus, it is extensively applied to the structural systems with pin-connected 
joints. This study attempts to compare two variations of arc length method named “spherical” and “linearized” for the 
nonlinear analysis of structural system with rigid-connected joints. Also, two different element formulations are utilized to 
discretize the structural systems. Two open-source coded programs, Opensees and FEAP, are employed for six benchmark 
structural systems in order to compare the performance of employed arc-length techniques. Furthermore, in order to make a 
further observation in the nonlinear behavior of application examples, their simulations are not only sketched using graphs, 
but also displayed through the movies for each of benchmark tests. Consequently, the linearized type arc length technique 
implemented in FEAP shows a more success with a better prediction of load-deflection relation, noting that Opensees has 
a big advantage of having an element, which is capable of simulating the geometric nonlinearity.
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1. INTRODUCTION
Both a higher expectation for the structural system with lower cost and a variety in their building material may 

cause the structural system to be built with a higher slender. Thus, an inclusion of slender member into structural 
system causes the structural stability problem to emerge. Furthermore, an unexpected failure in the structural system 
is generally arisen from an incorrect modelling of structural elements. In fact, the stability issue in the structural 
mechanic has been already handled in association with the concepts of geometric nonlinearity. 

The compatibility and equilibrium equations along with the static or kinematic-related boundary conditions and 
constitutive equations manage the behavior of geometric nonlinearity. A unique differential equation has the ability of 
comprising one or more of these governing equations, along with the boundary and initial conditions for the structural 
mechanic problem. However, solely using such a strong form of governing equations is unfortunately not sufficient 
for solving any of the structural mechanic problems, due to an interaction among the governing equations. Therefore, 
a variational (weak) form is generally utilized in the structural mechanic problem with various boundary conditions, 
since it is possible to represent the governing equations by only a functional, which is responsible for approximating 
the governing equations, thereby using a Euler-Lagrange formulations. Thus, the requirement of satisfying all of 
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the boundary conditions is ignored. In the structural mechanic problem, the utilized functional generally indicates 
the capacity of stored energy in the structural system. In this regard, the structural mechanic problems with small 
deformations are represented with the functional with either displacement or stress fields (Santos, 2011). 

The stability analysis requires a correct identification of critical points (limit, turning, failure, etc.), since the 
critical points have big importance in the determination of both the stability boundaries and the response form of 
structural system. In general, the response forms, which are also named equilibrium path, are snap-through, snap-
back, bifurcation, and their combinations. Particularly, the snap-through buckling has occurred in a way jumping to a 
new point on the equilibrium path due to a sudden change in the structural system.

The first attempt to identify a critical point for an axially loaded column was made in 1757 by the mathematician 
Leonhard Euler. Euler directly utilized a strong form in order to derive the classic linear buckling theory. Unfortunately, 
the classic linear buckling theory is not able to analyze the postbuckling of structural system. Although the various 
energy-based functional were utilized to predict exact linear buckling load, their computational procedures ignored the 
prebuckling deformations as in the classic linear buckling theory (Corsanego and Tafanelli, 1980, Masur and Popelar, 
1976, Oran, 1967 and Tabarrok and Yuexi, 1989). Thus, the buckling analysis resulted in a prediction of higher linear 
buckling load for the complex structural system.

The identification of critical points requires a postbuckling analysis. Particularly, the postbuckling analysis is 
difficult for the nonconservative structural systems, since the governing equations of structural system have to be in an 
incremental-iterative form. Otherwise, it is impossible to trace the equilibrium path and identify the critical points. 

The arc-length method is proven to be a perfect predictor for the nonconservative structural systems (Riks, 1979 
and Crisfield, 1981). Thus, it has been improved in a way of various implementations (Crisfield, 1981, Ramm, 1981, 
Schweizerhof and Wriggers 1986 and Fried, 1984). Crisfield’ technique is based on finding the complex roots. Then, 
Forde and Stiemer (1987) improved Crisfield’ technique using an orthogonality principle against the computation of 
complex roots. Particularly, Crisfield (1997a; 1997b) highlights the computational procedures of arc-length and its 
variants through several Fortran codes. Teng and Luo (1998) proposed a new arc-length technique, named accumulated 
arc length. The other arc-length methods are exhaustively overviewed in references Xiao-Zu and Bashir-Ahmed (2004) 
and Ritto-Correa and Camotim (2008). It is also proved that the arc-length method is an intelligent nonlinear solving 
tool for different engineering fields (Yuan and Kardomateas, 2018, Habibi and Bidmeshki, 2018, Uddin et al., 2018), 
(Shokrieh et al. 2017, Nistor et al., 2017, Ray 2016). Particularly, the snap-through problem is solely examined using 
arc-length approach (Chandra et al., 2012 and 2015, Moghaddasie and Stanciulescu 2013). 

In this study, the arc-length method based an incremental-iterative based computational procedure is utilized for 
the nonlinear analysis of structural system. Firstly, the load is proportionally introduced into structural system. Then, 
the responses computed depending on a rigidity matrix “K” or flexibility matrix “F=K-1” along with the residual 
or end forces are utilized for the next iterations. The rigidity and flexibility matrices, residuals, or end forces are 
derived depending on the member type utilized as simulation model, for example, bar, beam, plate, and shell. In this 
study, the frame-type elements widely utilized for the rigid-connected joints are used in the simulation of beam-type 
structural system. However, FEAP and Opensees programs have two different frame element models, in other words, 
two different beam theories. Thus, the stability problem for the various structural systems is investigated considering 
two different element formulations, which are generated using the functional with single and multifields along with 
two different nonlinear analysis approaches. Due to the assumptions in the formulations of employed elements, the 
results obtained from the nonlinear structural analysis completely vary depending on the sensitivity to the governing 
parameters of element formulations, for example, the number of elements and integration points. In this regard, two 
type arc-length methods named “spherical” and “linearized” are utilized to solve the equations of structural systems 
due to their ability of analyzing the postbuckling for the conservative and nonconservative structural systems. Then, 
their computing performances are compared considering the number of elements and integration points. 

The outline of this study begins with an introduction. The element formulations are considered in the second 
section. The employed nonlinear structural analysis approaches are presented in section three. Section four is reserved 
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for the application of employed nonlinear structural analysis approaches to the benchmark problems and the discussion 
of results. The conclusion is presented in the last section.

2. A CONSIDERATION OF BEAM THEORIES FOR FRAME ELEMENT MODELS 
UTILIZED IN SIMULATIONS

This section has two subsections. Thus, firstly, the basic concepts for employed beam theories are introduced. 
Then, the fundamentals for each of the beam theories are separately presented in two subsections. The formulations 
of stiffness or flexibility matrices including the residual-related computation are given, thereby associating them with 
the subroutines and objects of FEAP and Opensees programs, respectively. 

In the section of introduction, it is mentioned that the best alternative solution of differential equation in the strong 
form is to use the weak (variational) form, which is represented by a functional. This functional is obtained in a way 
of using the energy-related principles. In general, the complementary-energy principles are preferably utilized in the 
structural mechanic (Veubeke, 1965). The principle of minimum total potential energy and alternatively the principle 
of virtual work are established on the displacement field, which is assumed as the primary unknowns. These principles 
assume that the transmission of stress is exact, although there exists a possibility of stress discontinuities at the 
element boundaries. However, the principle of virtual work is preferably utilized in the nonlinear structural models. In 
fact, the main reason behind the widely usage of the principle of virtual work is that the form of functional is globally 
convex if the structural system is conservative. 

It is also possible that the functional is represented by the principle of maximum total potential energy, which is 
obtained, thereby introducing a Legendre transform to the principle of minimum total potential energy. 

The structural mechanic problems with relatively larger deformations require a consideration of multifields in 
order to obtain an accurate nonlinear model for the structural systems (Hermann, 1965). Fortunately, the principle of 
stationary total complementary energy is proven to be an effective functional for simultaneously using displacement 
and stress fields (Hellinger, 1914). The functional with both single and multifields is widely utilized in the finite 
element models. 

In general, a functional that indicates the stored energy capacity of structural system is utilized to solve the 
structural mechanic problem. 

                  (1)

The cross-sections that are divided into small segments throughout the centroidal axis of structural element are 
laid down in a space Ω. The boundary of space is represented by the combination of Neumann and Dirichlet boundary 

. The generalized vectors  and  contain the external distributed and concentrated loads, respectively. 
While the stress resultant  contains the axial-shear and bending stresses, the generalized strain vector, ε, is composed 
two vectors, each of which is obtained through the constative equations depending on the axial-shear and bending 
stresses. Hence, the strain energy density and complementary energy density per unit length of element,  and 

, respectively, are determined depending on ε. While the generalized vector  contains the displacement-
rotation, the displacement-rotations of element nodes are indicated by the generalized vector u. The generalized stress 
resultants r and reactions s are assumed, defined as Ω and , respectively. In the framework of these definitions, 
a general expression of potential energy is formulated using the equilibrium, compatibility, and boundary related 
equations (see Eq. (1))

In Eq. (1), although the potential energy is formulated for multifields, d, ε, s and r, it is easily transformed into the 
potential energy with single field in a way of omitting several terms. Thus, the principle of virtual work is obtained, 
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thereby applying first-order derivation into the potential energy form, which is obtained by discarding several terms. 
In the structural mechanic, an equilibrium in a structural element is provided only if the variational form of potential 
energy takes a stationary value for the proposed fields and boundary conditions. In this regard, the variational form 
of potential energy is firstly equalized to zero. Then, the equilibrium equations are obtained from the Euler-Lagrange 
equations. The numerical solutions obtained using equilibrium equations and static (Neumann) boundary conditions 
are named kinematically admissible solutions. Furthermore, it is also mentioned that the displacement field is not 
commutative due to the larger rotations. Therefore, the rotations are represented by the tensors that is parameterized 
through Euler–Rodriquez formula (see Reference Ritto-Correa and Camotim, 2002). 

The generalized stress resultants, r and reactions, s defined in Ω and on  are represented depending on the 
generalized operator H that is responsible for computing the rotation tensor as

                                                (2)

The strain energy density  can also be represented depending on the complementary energy density as 
. Thus, it is possible to obtain two different functionals depending on two different energy 

densities. Particularly, the functional obtained using the complementary energy density is also named “Hellinger–
Reissner Potential energy form”. These functionals are formulated as

                                                          (3)

                                                                          (4)

The numerical solutions obtained using the equilibrium and compatibility equations including the kinematic 
(Dirichlet) boundary conditions are named statically admissible solutions. 

2.1 The Frame Element Model Used by Opensees Program

The statically admissible solutions are obtained depending on the total potential energy form, which contains 
the equilibrium and compatibility equations including the static and kinematic boundary conditions (see Eq. (3)) 
(Neuenhofer and Filippou, 1997 and Spacone et. al., 1996, Scott and Fenves, 2006). It is also mentioned that a special 
case of the total energy form is associated with the complementary energy density and named as “Hellinger–Reissner 
Potential energy form” in the preceding section. Thus, the Hellinger-Reissner Potential energy form in Eq. 4 can be 
represented by two separate subpotential energy forms:

                                                                      (5)

The displacements u is represented with the Bernoulli–Euler beam theory neglecting the warping effect, but not 
the twist effect ψ (see Souza, 2000):

                                                                                                         (6)

Then, the displacements u0 and strains ε depending on the generalized section strains d and the coordinates in 
cross-section a are represented as
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                             (7)

An integration of axial forces N, the bending moments M along with the torque T on the cross-sectional area A 
depending on the stress σ give the stress resultant vector S:

                                                                                       (8)

Eq. (8) is also written depending on an assumption of general function C:

                                                                 (9)

In fact, the stress resultant vector in Eq. (9) also represents the section constitutive relation. Therefore, the 
linearization of this section constitutive relation resulted in the tangent section stiffness matrix  or 
the tangent section flexibility matrix .

The stationary of the Hellinger-Reissner potential functional in Eq. (5) is computed, thereby taking its variation 
and setting it equal to zero as

                                                                                                                            (10)

 Furthermore, if the terms  and D are assumed to represent the specified end forces and end displacements 

assuming the moving system in a rigid body modes, the term Πext becomes equal to  . Thus, Eq. (10) is 
rewritten as

                                                                                         

(11)
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Following the virtual boundary conditions  and the basic 
assumptions , the solution of “Equation 
(1)” is in Eq. (11); in other words, the linear and angular momentum balance equations give the section forces S(x), 
which are represented depending on the end forces P and the displacement-dependent force interpolation functions 
b(x):

                                                                   (12)

Assuming the virtual forces  and the given displacements u, v and w, the solution of “Equation 
(2)” in Eq. (11) gives the virtual section forces δS, which are represented on the virtual end forces δP and the 
displacement-dependent virtual force interpolation functions b*(x):

                                                      (13)

Furthermore, the integration of virtual section forces δS and the generalized section strains d gives the product of 
virtual end forces δP and end displacements D:

                                                                (14)

It is noted that Eq. (14) is computed in the section state level. The computation of end displacement D is 
accomplished using the integration points throughout element length. Furthermore, Eq. (14) has big importance, since 
it is possible that the flexibility and stiffness matrix is derived for the geometrically nonlinear flexibility-based element 
in a way of taking the derivative of end displacements D with respect to the end forces P:

                                                            (15)

where b(x), b*(x) and f(x) are the displacement-dependent force and virtual force interpolation functions (see 
Eq. (12-13)) and the section tangent flexibility matrix (see Eq. (10)), respectively. Also, h(x) and g(x) are obtained 
depending on the displacements u & w, the curvatures κz & κy and the end forces P1, P2, P3, P4, P5 and P6 

                                                           (16)
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                                                       (17)

 In Eq. (16-17), the terms  and  are represented by a matrix notation as

                                                                           (18)

where I* is the curvature-based displacement interpolation influence matrix, and ξj are sample points that indicate 
the integration points in the number of ( j=1,..,n) (see Souza, 2000).

It is assumed that the deformations are defined on three coordinate systems, named global that does not vary 
with the end nodal displacements of structural element, local that indicates a straight line connected the end nodes 
of deformed structural element, and basic that is obtained from the deformed structural element depending on the 
rigid body translational and rotational movement. It is noted that the basic system is utilized in the generation of 
co-rotational type formulation of structural element.

The stiffness matrix K (see Eq. (15) and end forces P are obtained in the basic system. The transformations of these 
matrices into the local system are provided by the use of a transformation matrix T. In fact, the transformation between 
the basic and local systems is accomplished by using the principle of corotational formulation. The fundamental 
behind this principle is based on a movement of finite displacement and rigid body rotations, but the moderate or small 
deformations. Therefore, firstly, the nodal triads  and  in the basic system are 
defined depending on the base vectors  in the local system. In fact, the rotation matrix R is represented 
by the pseudo(rotation) vectors γI and γJ that define the rotation of the element ends and are obtained as

                                                                                                   (19)
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It is noted that the rotation vectors are not additive. Thus, the rotation vector γ is moderately large and the mean 
rotation matrix  with the unit vectors  is a reasonable representation of the rotation from NI to 
the mean configuration. The computation of γ/2 involves the extraction of the unit quaternion from the rotation matrix 
R(γ). In fact, the elements of mean rotation matrix  are utilized for the computation of unit vectors 

 in the basic system. Thus, it is possible to compute the rotations θI and θJ for each of nodes I and J in the basic system 
in a way of using the unit vectors E and the nodal triads NI and NJ and thus form the generalized displacement matrix 
D depending on the rotations θI and θJ. Furthermore, it has to be noted that the transformation matrix T is also formed 
depending on the unit vectors E and the rotations θI and θJ.

After the computation of transformation matrix T, the element tangent stiffness matrix  in the local system is 
calculated depending on the geometric stiffness matrix KG and element tangent stiffness matrix K in the basic system as

                                                                                                                                                  (20)

In Eq. (20), the derivation of element geometric stiffness matrix KG is found in Reference Souzo (2000).

Computing Procedure
1. Update the translational displacement matrix U and the rotational matrix R using ΔU and Δγ, which is extracted 

from the general displacement vector  in the local system (see TclForceBeamColumnCommand.cpp and 
ForceBeamColumn3d.cpp):

                                                                              (21)

Because of the impossibility of summing the rotation vectors γ, the best way of obtaining the mean rotational 
matrix  is to utilize the quaternions associated with the rotation vectors γ (see Eq. (19) (see CorotCrdTransf3d.cpp 
including subfunctions CorotCrdTransf3d::getQuaternionFromPseudoRotVector, CorotCrdTransf3d::quaternionPro
duct, CorotCrdTransf3d::getRotationMatrixFromQuaternion,

CorotCrdTransf3d::getSkewSymMatrix,

CorotCrdTransf3d::getQuaternionFromRotMatrix,

CorotCrdTransf3d::getTangScaledPseudoVectorFromQuaternion, respectively). 

2. Compute the unit vectors E in the basic system depending on the mean rotation matrix  (see CorotCrdTransf3d::c
ompTransfMatrixBasicGlobal)

3. Compute the rotations θI and θJ for each of nodes I and J in the basic system (see CorotCrdTransf3d::getBasicTri
alDisp).

4. Form the generalized displacement matrix D depending on the rotations θI and θJ (see CorotCrdTransf3d.cpp)

5. Compute the displacement D* and K (see the term D in Eq. (14) and K=F-1 in Eq. (15)) in the section state 
level and then utilize D* with the generalized displacement matrix D for the updated displacement matrix 

 (see Souza, 2000). Then, update end forces 
 
P in the element state level (see 

ForceBeamColumn3d.cpp). 

6. Compute the transformation matrix T depending on the unit vectors E and the rotations θI and θJ (see CorotCrdTr
ansf3d::compTransfMatrixBasicGlobal).

7. Compute the geometric stiffness matrix KG.

8. Compute the end forces 
 
and tangent stiffness matrices  in the local system (see 

ForceBeamColumn3d.cpp).
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2.2. The Frame Element Model Used by FEAP Program

It is mentioned that the kinematically admissible solutions are obtained through the use of the virtual work 
principle. In other words, the total potential energy functional, which is constituted on the equilibrium equations and 
static boundary conditions, is a functional of vectorial field (Carotenuto, 2006, Simo and Vu-Quoc, 1986, Crisfield, 
1990, Ibrahimbegovic and Mikdad, 1998, Zienkiewicz and Taylor, 2000a and 2000b).

                                                                                                                                                      (22)

If its incremental form for the solution with a numerical solution, for example, Newton–Raphson, is considered, 
then it is written as

                                                                                                                                        (23) 

It is assumed that a vector  is obtained, thereby rotating the vector P by an angle θ. In fact, the rotation θ in 
the vector form contains the angles , each of which represents the related angle components in the cartesian 
coordinate system. Thus, the rotation vector θ is written depending on the unit vector e and its normalized form θ:

                                                                                                                                       
(24)

Then, the relation between  and P can be associated with a three-dimensional rotation tensor Λ(θ):

                                                                                                                                                             (25)

The rotation vector parametrization of rotation tensor Λ(θ) is also accomplished depending on the normalized 
form θ:

                                                  (26)

It is noted that this parametrization is also called as “exponential mapping” or “Rodrigues formulae”. 

Furthermore, the axial vector ω is also obtained depending on the derivative of the rotation vector :

                                                                                                   (27)

It is possible that the linearization of T(θ) and Λ(θ) is computed as δT and δΛ. Thus, the direction vector wδ is 
represented:

                                                                                                                                                          (28)

The other important issue is related to the alternative representation of rotation vector θ and its normalized form θ 
due to the barriers on the additive feature of vectorial quantities. Thus, the quaternion q, which contains both the scalar 
part q0 and vector part q, is utilized to represent the rotation tensor Λ(θ):
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                                                    (29)

It is assumed that the unity vector E3 and t3 defines the third axis for the undeformed and deformed configuration 
of element throughout the element length L along with the unity vectors E1 & E2 and t1 and t2 for the undeformed 
and deformed configuration of element cross-section, respectively. Then, the position vector X for the undeformed 
configuration is

                                                                                                         
(30)

The position vector x for the deformed configuration is computed depending on the deformation map  
and a vector field  for the position of line centroid:

                                                                           (31)

It is noted that the rotation tensor Λ(θ) is also utilized to represent the cross-section rotation Λ(X3). Thus, a general 
expression for the rotation tensor Λ can be reformulated using the vector product :

                                                                                                                                                             (32)

The derivative of cross-section rotation Λ(X3) is

                                                                                                                                                          
(33)

The deformation gradient F from the three-dimensional theory of nonlinear continuum mechanics is

                                                                                                                                             (34)

Thus, the deformation gradient F is written using the strains γr and κr for the undeformed configuration of element 
along with γ and κ for the deformed configuration of element:

               (35)

It is noted that linear strain L in Eq. (35) is also utilized for both finite-deformation and small-strain hypotheses 
models. Particularly, the small-strain hypotheses model for the derivation of FEAP element formulation is preferably 
utilized assuming approximated Green-Lagrange strain tensor E* as



Comparison of nonlinear solution techniques named arc-length for the geometrically nonlinear analysis of structural systems92

                                                                                                                                                          (36)

Furthermore, the virtual variations or linearization of the strains γr and ωr depending on the operator  (see a 
further information about 

 
in Carotenuto, 2006) is written as

                                                    (37)

It has to be noted that this linearization in Eq. (37) is accomplished in an indirect approach for the element 
formulation in the FEAP program (see Carotenuto, 2006). The basic assumptions for the deformation and displacement-
related quantities are given at the preceding part. The stress tensor for the FEAP element can be derived depending 
on either first Piola–Kirchhoff P or second Piola–Kirchhoff stress tensor S. The relation between first and second 
Piola–Kirchhoff stress tensors is formulated depending on the deformation gradient F:

                                                                                                                                                                   (38)

Thus, the internal work δΠInt according to the principle of virtual work is written depending on the linearized strain 
tensor δa (see Eq. (36) and Eq. (37)),

                                                                                                              (39)

The inner two parts of integration in Eq. (39), briefly Cf and Cm, are written depending on the cross-sectional 
area A, shear module G, elasticity module E and the inertia moments J1, J2, J12 and Jt considering the undeformed 
configuration of element in the cartesian coordinate:

                                                                                                                           (40) 

                                                                                                          (41)

Thus, Eq. (39) is rewritten depending on Eq. (37) and Eq. (40-41):

                                                               (42)

The linearization of Eq. (42) is accomplished:
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        (43)

Furthermore, the external virtual work is written depending on the body forces b,

                                                                                                                       (44)

 Thus, Eq. (23) is written as

           (45)

Computing Procedure

1. Compute the virtual variations of strains  by Eq. (45) as -K-1.Residual using the previous iteration (see 

formfe.for in pmacr2.for along with plsolve in pmacr2.for)

2. Update the position of line centroid, its derivative along with the rotation tensor ,  and Λ depending on the 
virtual vwariations of strain  (see Eq. (35)) (see framf3d.for) 

3. Compute the strains  and  (see Eq. (35)) (see bmshp.for and strefb.for in framf3d.for)

4. Compute the internal and external virtual works Πint and Πext using Eq. (42) and Eq. (44) (see framf3d.for)

5. Compute the stiffness matrix using Eq. (43) (see geomfb.for and bmbnfb.for in framf3d.for)

6. Compute Residual as (Πint - Πext) (see framf3d.for)

3. THE EMPLOYED NONLINEAR SOLUTION PROCEDURES
As to the proportional loading, the structural responses are computed, thereby increasing the factored external 

loading. Then, the incremental load is iteratively controlled depending on the convergence of residual value in order 
to determine a new incremental load step. This incremental and iterative-based computation begins by computing the 
residual value as

                                                                                                                                              (46)

In Eq. (46), the difference between a “fixed external loading” qef with factorized by a “load-level parameter” λ  and 
“internal forces”, qi which varies depending on a “displacement”, p is defined by “residual”, g . Eq. (46) becomes zero 
at an equilibrium state. The solving of Eq. (46) in a way of using a newton incremental-iterative solution method is 
formulated as

                                                                                                                                              (47)
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The “iterative displacement”,  in Eq. (47) is computed at a new unknown load level  and formulated 
using Eq. (46):

                                                                                                                    (48)

Thus, a new incremental displacement is obtained using Eq. (48):

                                                                                                                      (49)

However, “incremental load parameter” δλ is still unknown. For this purpose, an “arc-length” Δl is specified at an 
equilibrium point ( ) and aimed to intersect with the load-displacement path (see the derivation of arc-length in 
Crisfield (1997b)). The “arc-length” s is formulated as

                                                                                                                                 (50)

The arc length in Eq. (50) is in an incremental form:

                                                                                                                    (51)

Eq. (51) is utilized to derive a number of variations of arc-length techniques. Therefore, Eq. (51) is firstly used 
to derive the “spherical arc-length technique”. For this purpose, Eq. (51) for both “new” n and “old” o iterations is 
rewritten as

                                                                                (52)

In order to obtain δλ depending on a “scaling parameter” φ, Δpn in Eq. (52) is introduced to Eq. (52). Then, the 
quadratic equation in Eq. (52) using Eq. (51) is solved for δλ.

                                                                                                                                              (53)

                                                                                              (54)

In this regard, Eq. (51) can be utilized to derive “linearized arc-length” technique as well. Thus, Eq. (51) is 
rewritten using Taylor series:

                                                                                                                 (55)

Eq. (55) is rewritten for the term :
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                                                                                                                   (56)

If  is taken as zero, the “iterative change”  becomes orthogonal to the “secant change” 

If “iterative displacement” δp in Eq. (48) is introduced to Eq. (56), “incremental load parameter” δλ is obtained 
using “linearized arc-length” technique:

                                                                                                                (57)

The computing complexity of linearized arc-length technique is lower than the spherical arc-length technique 
because of not requiring solving any algebraic equation and choosing the correct root. Therefore, it is preferably 
improved by implementation of available iterative search techniques. One of the improvements is the hybridization of 
a line search technique with linearized arc-length technique. In this regard, the arc length, which is formulated in Eq. 
(55) using Taylor series and utilized to derive the linearized arc-length technique, is employed to hybridize the arc-
length technique with a line search technique. One of these attempts is based on taking the value of scaling parameter 
φ to be zero. Thus, Eq. (55) is rewritten using the iterative displacement, δp:

                                                                                                                               (58)

Thus, the incremental load parameter, δλ becomes the following form:

                                                                                                                                                         (59)

The implementation of line-search technique in the linearized arc-length technique, which is assumed to be , 
is constituted on a multiplying of iterative disp. δp by a “line search step length” . In this regard, the linearized and 
spherical arc-length techniques are utilized by Opensees (see ArcLength.cpp and ArcLength1.cpp). FEAP uses the 
linearized arc-length approach hybridized by the line-search technique (see Figure 1) (see arclen.for). 

Linearized and spherical arc-lengths are utilized by FEAP and OpenSees programs in order to solve the nonlinear 
structural responses under the predefined loading conditions. In order to introduce their governing parameters utilized 
by FEAP and OpenSees programs, a typical pseudocode is presented in Figure 1.
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Predefine “Number of Increment”, “Number of Iteration”, “Convergence Tolerance” tol, Fixed External Load qef  

Predefine first adjustment  

Assume , , ,

for i=1:Number of Increment

Predictor Step

  form element and system stiffness matrix, , 

  Solve  and 

  if i=1, Compute  using , end

  for j=1:Number of Iteration

Corrector Step

  if j=1, , else,  end

  Solve  and 

Assume , 

  Compute  using 

  if    , else, , end         for only FEAP

  if ((  and ), , end                        for only FEAP

  Update  and 

  end

    if convergence (tol) is satisfied, STOP

end

Figure 1. A Pseudocode for The Use of Arc-length Techniques

4. APPLICATION EXAMPLES
In this section, the postbuckling analyses of six benchmark problems are performed using two different element 

approaches and nonlinear solution techniques. Thus, it is possible to compare the computing efficiencies of the employed 
solution procedures with respect to the employed elements. The computing performances are evaluated depending 
on the two different elements-related parameters, the number of element and integration points. Furthermore, the 
nonlinear solutions techniques have a big sensitivity to any variation in their governing parameters. Therefore, the 
better combinations of governing parameters, number of increment “NIN”, and number of iteration “NIT” for FEAP 
along with arc-length value “ALV” and alpha value “AV” for Opensees are obtained from a number of nonlinear 
structural analysis trials and presented for each benchmark problems (see Table 1). It is noted that the parameter 
AV equals zero for the use of linearized arc-length technique. For this purpose, two available software devices with 
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open-source code named Opensees and FEAP are utilized for the computation of the nonlinear structural analyses. It 
is noted that the relatively higher converged solutions are obtained from the trials with the parameter combinations 
of higher elements and/or integration points for both Opensees and FEAP. In order to make a further observation in 
the nonlinear analysis of structural systems, a movie for each of six benchmark tests with the decreased elements is 
also included for both Opensees and FEAP, respectively. It is noted that the computing performances of Opensees and 
FEAP are easily affected from minor adjustments of their governing parameters. 

The shear modulus G is assumed to be computed depending on the elasticity modulus E and Poisson ratio υ as 

. The shear correction factor is taken as (5/6). 

While the governing parameters of Opensees and FEAP are listed for six benchmark problems in Table 1, the 
elapsed times during execution of Opensees and FEAP are summarized in Table 2.

Table 1. The Main Governing Parameter Values of Employed Solution Algorithms and Elements.

Example ENSA Governing Parameters of
ENSA

Governing Parameters
of Convergence Tests

Governing 
Parameters 

of Employed 
Elements

NIN NIT ALV AV CT
(Energy) MNIT CT

(Residual)
Zero

Energy NIT CT

Cantilever 
Beam

Opensees 500000 10 0.015 0.01 1.0e-25 10 - - 100 1.0e-25

FEAP 5000 10 - - 1.0e-16 
(default) - 1.0e-8 

(default) 0.00 - -

Portal
Frame

Opensees 70000 10 0.01 0.0001 1.0e-15 10 - - 100 1.0e-25

FEAP 20000 10 - - 1.0e-16 
(default) - 1.0e-8 

(default) 0.00 - -

Simply
Beam

Opensees 50000 10 0.001 0.001 1.0e-25 10 - - 100 1.0e-25

FEAP 2800 10 - - 1.0e-16 
(default) - 1.0e-8 

(default) 0.00 - -

William
Toggle

Opensees 50000 10 0.001 0.01 1.0e-25 10 - - 100 1.0e-25

FEAP 4000 10 - - 1.0e-16 
(default) - 1.0e-8 

(default) 0.00 - -

Arch
Opensees 70000 10 0.1 0.01 1.0e-15 10 - - 100 1.0e-25

FEAP 1000 10 - - 1.0e-16 
(default) - 1.0e-8 

(default) 0.00 - -

Lee
Frame

Opensees 80000 10 0.1 0.01 1.0e-15 10 - - 100 1.0e-25

FEAP 2000 10 - - 1.0e-16 
(default) - 1.0e-8 

(default) 0.00 - -

ENSA: Employed Nonlinear Solution Approaches; LI: Load Increment;  NIN: Number of Increment;  ALV: Arc-
length Value
CT: Convergence Tolerance; NIT: Number of Iteration;  AV: Alpha Value;  MNIT: Maximum Number of Iteration
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Table 2. The Elapsed Time for Execution of Employed Nonlinear Solution algorithms.

Example ENSA Elapsed Time for The Execution of Employed Nonlinear Solution algorithms 
Using Different Parameter Sets Utilized in Element Formulation

DN=4 & 
NIP=2

DN=4 & 
NIP=10

DN=10 & 
NIP=2

DN=10 & 
NIP=10 DN=4 DN=10

Cantilever
Beam

Opensees 1.8942 1.6719 5.4098 6.2725 - -

FEAP - - - - 24.0004 27.5644

Portal
Frame

Opensees 80.5330 81.7293 160.4939 159.5100 - -

FEAP - - - - 101.3010 131.4181

Simply
Beam

Opensees 33.2670 33.4963 46.7105 46.9425 - -

FEAP - - - 13.3570 15.3948

William
Toggle

Opensees 30.5461 30.4222 34.798 34.3699 - -

FEAP - - - - 22.5353 27.8520

Arch
Opensees 20.3706 20.1530 429.0021 429.2157 - -

FEAP - - - - 5.5707 6.0546

Lee
Frame

Opensees 15.8066 15.9966 86.2060 84.8022 - -

FEAP - - - - 11.6716 13.8712

ENSA: Employed Nonlinear Solution Approaches; DN: Division Number; NIP: Number of Integral Point

4.1. Cantilever Beam Subjected to a Bending Moment 

This example is a cantilever beam with a length of 10 m subjected to a concentrated moment with a magnitude 
of 10 kN.m at the free end as shown in Figure 2 (Hsiao and Huo, 1987). The elasticity module and Poison Ratio are 
120000 kN/m2 and 0.3. The cross-section of beam is rectangular with a dimension 1.0mx0.1m. The main feature of 
this beam is its ability of bending into a full circle. The vertical and horizontal displacements of free end are displayed 
for both Opensees and FEAP in Figures 3-4. 

The relatively higher converged solution of this cantilever beam is obtained by Opensees. The success of linearized 
arc-length method compared to the spherical arc-length one for Opensees is easily observed from the almost full tracing 
of equilibrium curve (see Figure 3a-3b and Figure 4a-4b). The linearized arc-length method utilized in Opensees is 
not affected from an increase in the number of element and integral points (see Figure 3a and Figure 4a). The similar 
result is also valid for using the increased element number for FEAP (see Figures 3c and 4c). The success of linearized 
arc-length method for Opensees is higher than that of linearized arc-length method for FEAP (consider the complete 
curve in Figure 3c and Figure 4c). However, the elapsed time for the execution of FEAP is lower than that of Opensees 
(see Table 2).

Figure 2. Cantilever Beam.
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Figure 3. Comparisons of Linearized and Spherical Arc Length Method with an implementation in Opensees 
along with Spherical Arc Length Method with an implementation in FEAP. 

Figure 4. Comparisons of Linearized and Spherical Arc Length Method with an implementation in Opensees 
along with Spherical Arc Length Method with an implementation in FEAP.
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4.2. Simply Supported Beam Subjected to a Concentrated and Axial Load

This Euler type beam, which is one of the classic nonlinear examples, is subjected to both axial and middle loads 
(Hsiao and Huo, 1987 and Shames and Dym, 1985). The magnitudes of axial and middle loads are 30 kN and 0.072/30 
kN (see Figure 5). While the length of beam is 10 m, the cross-sectional area and inertia moment are taken as 1 m2 
and 0.0001 m4. The elasticity module and poison ratio of the beam material are 1000000 kN/m2 and 0.3. Whereas the 
relatively higher converged solution, which shows the middle vertical displacement and load response, is obtained 
by FEAP (see the small Figure in Figure 6c), the linearized and spherical arc-length methods of Opensees along with 
linearized arc-length method of FEAP are displayed for different numbers of elements and integration points in Figure 
6a and 6b. Although the coarse (4 elements) or fine mesh (10 elements) along with lower (2 integration points) or 
higher (10 integration points) integration has not any effect on the predicting the full tracing of equilibrium curve, 
the linearized arc-length methods of Opensees become more successful then spherical one (see Figure 6a and 6b). An 
increase in the number of elements in FEAP leads to an elevation in the accurateness degree for predicting a correct 
equilibrium curve (see Figure 6c). Moreover, the accurateness degree of linearized arc-length method of FEAP in 
describing postbuckling behavior of the beam is higher compared to the linearized one of Opensees (see Figure 6b and 
6c). However, the elapsed time for the execution of FEAP is lower than Opensees (see Table 2). 

Figure 5. Simply Supported Beam.

Figure 6. Comparisons of Linearized and Spherical Arc Length Method with an implementation in Opensees 
along with Spherical Arc Length Method with an implementation in FEAP. 
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4.3. Clamped Hinged-Deep Arch Subjected to a Concentrated Load

The crown of this deep arch with a degree of 215 and a radius of 500 cm is subjected to a single vertical load of 
100 N (Hsiao and Huo, 1987 and Deppo and Schmidt, 1975). The elasticity module and poison ratio of the beam 
material are taken as 200000 N/cm2 and 0.3 (see Figure 7). The cross-sectional area and inertia moment are assumed 
as 100 cm2 and 833 cm4. The variation of (Load*Radius2)/(Elasticity Module*Radius) with (Vertical and Horizontal 
Displacement of Crown/Radius) is displayed for both Opensees and FEAP in Figures 8 and 9. The relatively higher 
converged solution of this cantilever beam is obtained by FEAP. The success of linearized arc-length method compared 
to the spherical arc-length one for Opensees is easily observed from the almost full tracing of equilibrium curve (see 
Figure 8a-8b and Figure 9a-9b). The linearized arc-length method utilized in Opensees is not affected from an increase 
in the number of element and integral points (see Figure 8a and Figure 9a). An increase in the number of elements in 
FEAP leads to an elevation in the accurateness degree for predicting a correct equilibrium curve (see Figures 8c and 
9c). Moreover, the accurateness degree of linearized arc-length method of FEAP in describing postbuckling behavior 
of the beam is higher compared to the linearized one of Opensees (see Fig. 8b and 9c). However, the elapsed time for 
the execution of FEAP is lower than that for Opensees (see Table 2).

Figure 7. Clamped-hinged deep arch.

Figure 8. Comparisons of Linearized and Spherical Arc Length Method with an implementation in Opensees 
along with Spherical Arc Length Method with an implementation in FEAP. 
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Figure 9. Comparisons of Linearized and Spherical Arc Length Method with an implementation in Opensees 
along with Spherical Arc Length Method with an implementation in FEAP.

4.4. Williams Toggle Frame Subjected to Concentrated Loads

This toggle frame in Figure 10 is firstly devised by Williams (1964). It is also investigated by Hsiao and Huo, 1987, 
Wood and Zienkiewicz, 1977, Pacoste and Eriksson, 1997 and Nanakorn and Vu, 2006. The toggle frame has a middle 
height of 0.386 in. and span of 12.943 in. The form of cross-sectional area is rectangular with a dimension of 0.753 in 
and 0.243 in. The elasticity module and poison ratio of the frame material are 10300000 lb/in2 and 0.3. It is subjected 
to a middle load of 80 lb. The load and vertical-horizontal displacement curves are computed and plotted in Figures 
11 and 12. The relatively higher converged solution, which shows the middle vertical displacement and load response, 
is obtained by FEAP (see the small Figures in Figures 11c and 12c). Whereas the coarse (4 elements) or fine mesh (10 
elements) along with lower (2 integration points) or higher (10 integration points) integration for Opensees has not any 
effect on predicting the full tracing of equilibrium curve (see Figure 11 (a-b) and 12 (a-b)), the fine mesh for FEAP 
becomes important for a higher prediction (see Figure 11c). The linearized arc-length method for FEAP is exhibited 
more accurately than linearized arc-length method for Opensees (consider the equilibrium curves in Figures 11a, 12a 
and 11c, 12c). The elapsed time for the execution of FEAP is lower than Opensees (see Table 2).

Figure 10. Williams Toggle Frame.
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Figure 11. Comparisons of Linearized and Spherical Arc Length Method with an implementation in Opensees 
along with Spherical Arc Length Method with an implementation in FEAP. 

Figure 12. Comparisons of Linearized and Spherical Arc Length Method with an implementation in Opensees 
along with Spherical Arc Length Method with an implementation in FEAP.
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4.5. Lee Frame Subjected to a Concentrated Load

This well-known classic nonlinear benchmark test under a concentrated load of 100 kN shown in Figure 13 has 
been firstly investigated by Lee et al. (1968). Then, it has subsequently been examined by Pacoste and Eriksson 
(1997), Hsiao and Huo (1987), Cichon (1984), Smolenski (1999), and Planinc and Saje (1999). The concentrated load 
is located on the fifth segment of the upper bar. This asymmetric frame, each part of which has a length of 120 cm, has 
a material, elasticity module, and poison ratio, which are 200000 kN/ cm2 and 0.3. The cross-sectional area and inertia 
moment are assumed as 100 cm2 and 833 cm4. The load and vertical-horizontal displacement curves corresponding to 
the point of imposed load are plotted in Figures 14-15. The relatively higher converged solution is obtained by FEAP. 
The spherical arc-length method for Opensees is failed due to some difficulties in convergence (see Figures 14b-15b). 
Although the linearized arc-length method for Opensees is employed with an increase in the number of elements 
and integral points, it does not show more convergence compared to the linearized arc-length one for FEAP (see 14a 
and 15a along with 14c and 15c). However, an increase in the elements number for FEAP leads to obtaining a close 
equilibrium curve to the relatively higher converged one (see Figure 14c and 15c). The elapsed time for the execution 
of FEAP is lower than that for Opensees (see Table 2).

Figure 13. Lee Frame.

Figure 14. Comparisons of Linearized and Spherical Arc Length Method with an implementation in Opensees 
along with Spherical Arc Length Method with an implementation in FEAP. 
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Figure 15. Comparisons of Linearized and Spherical Arc Length Method with an implementation in Opensees 
along with Spherical Arc Length Method with an implementation in FEAP.

4.6. Portal Frame Subjected to the Concentrated Loads

This portal frame shown in Figure 16 has one-bay and one-story. This benchmark problem has been tackled to 
verify the computer code in working with more practical structures (Hsiao and Huo, 1987). The simple portal frame 
is subjected to concentrated vertical and horizontal loads of 6000 N and 6 N at its upper-left and right-hand nodes. 
The elasticity module and poison ratio of the portal frame material are taken as 30000 N/cm2 and 0.3. The cross-
sectional area and inertia moment are assumed as 11.77 cm2 and 310.1 cm4. The relatively higher converged solution 
is obtained by FEAP (see the small figure in Figure 17c). Although the spherical and linearized arc-length methods for 
Opensees are employed with an increase in the number of elements and integral points, they failed in tracing the full 
load-displacement curve (see Figure 17a and 17b). However, the increase in the elements number for FEAP leads to 
showing a good agreement with results in the relatively higher converged solution (see Figure 17c). The elapsed time 
for the execution of FEAP is lower than that for Opensees (see Table 2).

Figure 16. Portal Frame.
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Figure 17. Comparisons of Linearized and Spherical Arc Length Method with an implementation in Opensees 
along with Spherical Arc Length Method with an implementation in FEAP. 

5. CONCLUSION
This study proposes to tackle the nonlinearity issue, thereby employing two well-known computer programs with open-

source codes, named Opensees and FEAP, for the six benchmark analyses problems. Thus, these computer codes are also 
evaluated in this study. In this regard, two arc-length methods, which are implemented in the employed computer codes, 
named spherical and linearized arc length methods, are compared, thereby utilizing two different element formulations. 
Moreover, in order to increase the convergence degree of the employed solution algorithms, the governing parameters 
of the element formulation, for example, the numbers of elements and integration points, are combined, assuming their 
different values, and applied into the benchmark problems. The employed nonlinear solution algorithms are utilized to 
analyze the six nonlinear benchmark problems. The results obtained are summarized as follows:

The computing performance of spherical arc-length technique is the lowest compared to the linearized arc-length i) 
technique considering their ability of tracing the equilibrium curve.

The linearized arc-length technique utilized by FEAP exhibits a higher prediction for the equilibrium curve than ii) 
that for Opensees due to the implementation of a line search approach into its computation mechanism.

 Whereas using the increased numbers of elements and integration points for Opensees has not any importance iii) 
for tracing the equilibrium curve with more convergence degree, FEAP is negatively affected from using a coarse 
meshing for the discretization of structural system.

 The computing time for Opensees is higher than that for FEAP due to the implementation of element state iv) 
determination in order to establish the stress-strain relation for the flexibility-based element formulation.
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