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ABSTRACT

Weighted voting systems play a crucial role in the investigation and modeling of many 
engineering structures and political and socio-economic phenomena. There is an urgent 
need to describe these systems in a simplified powerful mathematical way that can be 
generalized to systems of any size. An elegant description of voting systems is presented 
in terms of threshold Boolean functions. This description benefits considerably from 
the wealth of information about these functions, and of the potpourri of algebraic and 
map techniques for handling them. The paper demonstrates that the prime implicants 
of the system threshold function are its Minimal Winning Coalitions (MWC). The 
paper discusses the Boolean derivative (Boolean difference) of the system threshold 
function with respect to each of its member components. The prime implicants of this 
Boolean difference can be used to deduce the winning coalitions (WC) in which the 
pertinent member cannot be dispensed with. Each of the minterms of this Boolean 
difference is a winning coalition in which this member plays a pivotal role. However, 
the coalition ceases to be winning if the member defects from it. Hence, the number 
of these minterms is identified as the Banzhaf index of voting power. The concepts 
introduced are illustrated with detailed demonstrative examples that also exhibit some 
of the known paradoxes of voting- system theory. Finally, the paper stresses the utility 
of threshold Boolean functions in the understanding, study, analysis, and design of 
weighted voting systems irrespective of size.

Keywords: Banzhaf index; Prime implicants; Threshold Boolean functions; Voting 
systems; Winning coalitions.

INTRODUCTION

A weighted voting system is a group of entities which have to come to a decision through 
voting. Each member of the system has a specific weight for its vote, and the decision 
is passed if it secures a minimum threshold of supporting votes. For simplicity, we 
shall not consider “abstention” here, i.e., we assume that every member of the system 
casts a vote of ‘yes’ or ‘no’. There is a wealth of examples of weighted voting systems 
in a variety of political and socio-economic entities such as (a) a presidential council 
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or parliament of a federal government composed of states of different sizes, (b) a state 
council with weighted representatives for the participating districts or counties, (c) the 
European Union (EU), and (d) the board of directors representing stockholders of a 
company or a corporation (March, 1962; Cross, 1967; Holler, 1982; Hershey, 1973; 
Steen, 1994; Taylor and Pacelli, 2008).

Our interest in the topic of weighted systems stems from an engineering 
application, namely, the evaluation of system reliability for a threshold system, i.e., a 
system whose success is a weighted voting function of the successes of its components 
(Rushdi, 1990; 1993; 2010; Rushdi and Alturki, 2015, Eryilmaz, 2015). Despite the 
urgent need for an adequate description of weighted voting systems that is scalable 
or generalizable to large systems, the only current descriptions rely on trial and error 
or computer simulations for large systems and use of lattice diagrams for very small 
systems (Steiner, 1967; Steen, 1994; Stewart, 1995; Taylor and Pacelli, 2008). Our 
study of the reliability of threshold systems revealed the availability of a very powerful 
tool for the study of weighted voting systems, namely the theory of threshold Boolean 
functions. There is already a great wealth of information in that theory that we are 
going to utilize in (and adapt to) the study of weighted voting systems. Moreover, we 
will benefit much from an associated pictorial tool, viz. the Karnaugh map (Rushdi, 
1997; Rushdi & Al-Yahya, 2000; 2001a; 2001b).

The organization of the rest of this paper is as follows. Section 2 reviews the basic 
concepts of threshold Boolean functions and uses them in interpreting important 
concepts in the theory of weighted voting systems, including those of a decision, 
minimal winning coalitions, and voting power. Section 3 demonstrates the findings 
of section 2 via three illustrative examples. The first example compares the existing 
method of lattice diagram to the proposed method of a threshold function. The second 
example discusses three schemes for the same problem, and nicely exposes some 
of the paradoxes of voting-system theory. Example 3 relates concepts of coherent 
Boolean threshold functions to common terminology of political coalitions.  Section 4 
concludes the paper and proposes some future work.

THRESHOLD BOOLEAN FUNCTIONS

By definition, a Boolean function S( ) = S(X1, X2, ……, Xn) is a threshold function 
(Muroga, 1971; Lee, 1978; Muroga, 1979; Rushdi, 1990; Crama and Hammer, 2011) 
if and only if there exists a set of real numbers W1, W2, …..,Wn, called weights, and T, 
called a threshold, such that

S( ) = 1  iff      ≥  T.                                     (1)

A threshold function S( ) satisfying Equation (1) will be denoted by H(n; ; ; T). 
Here, the magnitudes of the weights |Wi| were thought to give the relative importance 
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of the respective values of the elements or components Xi  in determining the values 
of the function (Hurst et al., 1985; Rushdi, 1990). However, Rushdi and Alturki 
(2015) demonstrated that this was not necessarily the case. In fact, they made a clear 
distinction between the weight of an element and its voting power. Such a distinction 
appears to be in agreement with the earlier findings of Banzhaf (1964).

A threshold Boolean function with positive weights and threshold is a natural 
description for the success of a threshold reliability system, or equivalently, for the 
decision made by a weighted voting system (Rushdi and Alturki, 2015). This function 
is a non-decreasing function, and hence it has a minimal sum that is identical to its 
complete sum, and both are expressible without complemented literals (Lee, 1978; 
Rushdi, 1986a; 1986b; Rushdi and Alturki, 2015). A prime implicant of this function is 
a Minimal Winning Coalition (Rushdi and Alturki, 2015), i.e., it is a winning coalition 
such that any defection from it negates its winning status (Steiner, 1967; Fishburn and 
Brams, 1996).

Now, we note that the famous Banzhaf index of voting power (Banzhaf, 1964; 
Dubey and Shapley, 1979; Hammer and Holzman, 1992; Alonso-Meijide and Freixas, 
2010;  Yamamoto, 2012), is simply the weight of the Boolean derivative (Boolean 
difference) (Reed, 1973; Lee, 1978; Muroga, 1979; Rushdi, 1986b) of the system 
function with respect to the pertinent element variable  

Bi = weight (∂f/∂Xi)                                             (2a)

= weight (f ( |1i) ⊕ f ( |0i)),                                      (2b)

where f( |1i) and f( |0i) are the subfunctions obtained by restricting the input  of f 
such that f is a 1 or a 0, respectively. In Equation (2), the weight of a Boolean function 
is the number of its true vectors (Rushdi, 1987a; Rushdi, 1987b), i.e., the number of 
vectors  for which S( ) = 1. The prime implicants of this Boolean difference can be 
used to deduce the winning coalitions (WC) in which the pertinent member cannot be 
dispensed with. Each of the minterms of this Boolean difference is a winning coalition 
in which this member plays a pivotal role, in the sense that the coalition ceases to be 
winning if the member defects from it. That is why the number of these minterms is 
identified as the Banzhaf index of voting power.

 ILLUSTRATIVE EXAMPLES

Example 1

Consider the weighted voting system

H (n; ; ; T) = H (3; A, B, C; 2, 1, 1; 3)                                 (3)
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taken from Stewart (1995). Here, member A has two votes, each of members, B 
and C has a single vote, and a majority of three votes upholds a decision. This system 
can be solved by the lattice diagram in Figure 1(a). The diagram shows all possible 
coalitions. These are given by the power set of the set S = {A, B, C}, namely

2s = {ɸ, {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A, B, C}}.              (4)

In Figure 1(a), two possible coalitions are linked by one edge if they differ by 
just one member, and such an edge is labeled by the member that the two coalitions 
do not have in common. Figure 1(a) also shows the total weight for every coalition. 
A winning coalition (one with total weight ≥ 3) is depicted as a black node, while a 
losing coalition (one with total weight < 3) is characterized as a white node. An edge 
going from a white node (losing coalition) to a black one (winning coalition) is a 
pivotal edge and is marked in bold red. These are five such edges. The voting power 
Bi of member i is the number of pivotal edges bearing its name, and hence BA = 3, 
BB = 1, and BC =1. In Figure 1(b), we redraw the lattice diagram of Figure 1(a) using 
a Karnaugh map layout (Rushdi and Ba-Rukab, 2004; Rushdi and Ba-Rukab, 2007; 
Rushdi and Albarakati, 2012).

Our alternative approach is to represent the system decision by the threshold 
Boolean function

{f (A, B, C) = 1}  <=> {2A + B + C ≥ 3}                               (5)

Figure 1(c) is a Karnaugh-map expression of the pseudo-Boolean function 

F (A, B, C) = 2A + B + C                                      (6)

and Figure 1(d) is a Karnaugh-map representation of the corresponding threshold 
function (F ≥ 3), namely

F (A, B, C) = AB ˅ AC.                                             (7)

Equation (7) states that f has two prime implicants AB and AC, which correspond 
to the minimal winning coalitions {A, B} and {A, C}, respectively. The Karnaugh map 
in Figure 1(d) is folded with respect to each of its arguments to obtain the Boolean 
differences (∂f/∂A), (∂f/∂B), (∂f/∂C), according to Equation (2) (Rushdi, 1986b) in 
Figures 1(e2), 1(e3), 1(e3), respectively. These are given as

∂f/∂A = B ˅ C                                                   (8a)

∂f/∂B = A                                                      (8b)

∂f/∂C = A                                                      (8c)
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and indicate that A cannot be dispensed with in MWCs {A, B} and {A, C}, while 
B is necessary in MWC {A, B}, and the C must be included in MWC {A, C}. The 
Banzhaf indices of the three members are:

BA = Weight (∂f/∂A) = 3                                          (9a)

BB = Weight (∂f/∂B) = 1                                          (9b)

BC = Weight (∂f/∂C) = 1                                          (9c)      

(b) A Karnaugh map embedding the lattice
(a) A lattice diagram for the
    H (3; A, B, C; 2, 1, 1; 3) 

                  (c) F = 2A + B + C                                    (d) f = AB ˅ AC

 

          (e1)  ∂f/∂A                      (e2) ∂f/∂B                                (e3) ∂f/∂C       
Fig. 1. Representation of a 3-member weighting system via (a) a lattice diagram, (b) a Karnaugh map, 

(c) a pseudo-Boolean function, (d) a threshold function, and (e) Boolean derivatives.
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Example 2

Table 1 shows three schemes for the voting weights of the six districts of a fictitious 
country called Blockvotia (Stewart, 1995). The six districts are Sheepshire (H), 
Richfolk (R), Candlewick (C), Fiddlesex (F), Slurrey (L) and Porkney Isles (P). For 
the sake of brevity, assume that the abbreviation of the name of a district, is also the 
two-valued Boolean indicator variable for its voting position. The voting positions and 
weights are expressed by the 6-element vectors

 = [H  R  C  F  L  P]T                                           (10)

  = [WH  WR  WC  WF  WL  WP]T                                                    (11)

Table 1. Voting weights for the districts of Blockvotia.

First scheme Second  scheme Third  scheme

WH 10 10 12

WR 9 9 9

WC 7 7 7

WF 3 3 3

WL 1 2 1

WP 1 2 1

Sum =  Σ Wi 31 33 33

T = ceiling (Σ Wi / 2) 16 17 17

Now, introduce the pseudo-Boolean function ( ): {0, 1}6   R such that

F ( ) = WH H + WR R + WC C + WF F + WL L + WP P,                  (12)

and hence the system is described by a threshold function f ( ): {0, 1}6   {0, 1} 
such that 

{f ( ) = 1} iff { F ( ) ≥ T}                                         (13)

where T is the threshold of the voting system, expressed as the ceiling of half the 
total sum of weights. In the following section, we discuss the three voting schemes 
presented in Table 1.

Scheme 1

Figures 2(a) and 2(b) are Karnaugh-map representations for F( ) and f( ) for the 
first scheme, herein designated F1( ) and f1( ), respectively. Since the function 
f1( ) is monotonically non-decreasing or coherent, its prime implicants entail solely 
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un-complemented literals, and its minimal sum is identical to its complete sum (Lee, 
1978; Rushdi, 1986a; Rushdi and Alturki, 2015), namely:

f1( ) = HR ˅ HC ˅ RC.                                          (14)

The threshold Boolean function f1( ) in Equation (14) has three prime implicants, 
HR, HC, and RC, each of which represents a Minimal Wining Coalition (MWC). The 
total weights of these MWCs are 

WHR = WH + WR = 10 + 9 = 19,                                   (15a)

WHC = WH + WC = 10 + 7 = 17,                                   (15b)

WRC = WR + WC = 9+ 7 = 16.                                       (15c)

Here, the coalition RC is the least MWC and just meets the bare minimum 
requirement of T = 16.  Fishburn and Brans (1996) suggest that this least MWC is the 
most stable among the class of MWCs. Figure 2(b) indicates that out of the 64 = 26 
system states or coalitions, there are 32 primitive winning coalitions (depicted with 
map cells of entry 1) and also 32 primitive losing coalitions (depicted with map cells 
of entry 0 (that are actually left blank)). Figure 2(c) is a Karnaugh-map representation 
of the Boolean derivative (Boolean difference) ∂f1/∂H. This map is obtained by folding 
the map shown in Figure 2(b) with respect to the variable H, so that a cell ( |1H) {of 
the right half of the map} and a cell ( |0H) {of the left half of the map} coincide as a 
single cell whose entry is obtained by XORing the entries of the two original cells, 
in accordance with Equation (2). The function (∂f/∂H) has two prime implicants RC 
and RC, which can be used to deduce the wining coalitions HRC and HRC in which 
member H cannot be dispensed with.

Figures 2(d) –2(h) express the Boolean difference of f1 with respect to variables R, 
C, F, L, and P respectively. The Banzhaf indices are:

BH = Weight (∂f1/∂H) = 16,                                      (16a)

                            BR = Weight (∂f1/∂R) = 16,                                      (16b)

                            BC = Weight (∂f1/∂C) = 16,                                       (16c)

BF = Weight (∂f1/∂F) = 0,                                         (16d)

BL = Weight (∂f1/∂L) = 0,                                         (16e)

BP = Weight (∂f1/∂P) = 0.                                         (16f)
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This means that the three largest districts have equal voting power, while the three 
smallest ones have no power at all. In fact, in any vote, at least two of the three largest 
districts will vote the same way, securing a MWC and leaving the three smallest 
districts powerless. In fact, none of the smallest districts can ever play a pivotal role in 
decision making. Furthermore, none of them can turn a winning coalition to a losing 
one by defecting from it, and none of them can turn a losing coalition to a winning 
one by joining it.

(a) F1( ) = 10 H + 9 R + 7 C + 3 F +  L +  P           (b) f1(X) = HR ˅ HC ˅ RC

                                                                                   

 

             (c) ∂f1/∂H                                                               (d)  ∂f1/∂R

             (e) ∂f1/∂C                                                               (f) ∂f1/∂F

             (g) ∂f1/∂L                                                               (h) ∂f1/∂P

Fig. 2. The pseudo Boolean function F1( ), the threshold function f1( ), and the Boolean derivatives for 
the first scheme in Table 1.
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Scheme 2

Scheme 2 was proposed as a remedy to the unfortunate situation in scheme 1 by adding 
an extra vote to each of the two smallest districts (see Table 1). Figure 3(a) and 3(b) 
are Karnaugh-map representations for F( ) and f( ) for the second scheme, herein 
designated as F2( ) and f2( ), respectively. The functions F2( ) and f2( ) are given 
by:

F1( ) = 10 H + 9 R + 7 C + 3 F + 2 L + 2 P                           (17)

f2( ) = HR ˅ HC ˅ RCL ˅ RCP ˅ RCF ˅ HFLP                        (18)

The function f2( ) has six prime implicants HR, RCF, RCL, RCP, HC and HFLP,  
each of which represents an MWC. The total weights of these MWCs are 

WHR = WH + WR = 10 + 9 = 19,                                   (19a)

WRCF = WR + WC + WF = 9 + 7 + 3= 19,                            (19b)

WRCL = WR+ WC + WL = 9 + 7 + 2= 18,                            (19c)

WRCP = WR + WC + WP = 9 + 7 + 2= 18,                            (19d)

WHC = WH + WC = 10 + 7 = 17,                                   (19e)

WHFLP = WH + WF + WH + WF = 10 + 3 + 2+ 2= 17.                    (19f)

Here, the two coalitions, HC and HFLP are the least MWCs and each of them 
just meets the bare minimum requirement of T = 17. Figure 3(b) indicates that 
out of the 64 = 26 system states or coalitions, there are still 32 primitive winning 
coalitions and also 32 primitive losing coalitions. Figures 3(c) – 3(h) are Karnaugh-
map representations of the Boolean derivatives, from which the Banzhaf indices are 
obtained as:

BH = Weight (∂f2/∂H) = 17,                                      (20a)

BR = Weight (∂f2/∂R) = 15,                                      (20b)

BC = Weight (∂f2/∂C) = 15,                                      (20c)

BF = Weight (∂f2/∂F) = 1,                                       (20d)

BL = Weight (∂f2/∂L) = 1,                                        (20e) 

BP = Weight (∂f2/∂P) = 1.                                        (20f)
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Scheme 2 is better than scheme 1, since each of the three smallest districts has 
now some power. It might seem paradoxical that district F gained some power, and 
also district H became slightly more powerful than districts R and C by simply adding 
votes to districts L and P. Though scheme 2 is better than scheme 1, it is still not 
entirely fair. For example, district F has more weight than any of districts L and P, but 
it has just the same power as each of them.

  (a)  F2( ) = 10 H + 9 R + 7 C + 3 F + 2 L + 2 P         (b) f2(X) = HR ˅ RCF ˅ RCL ˅ RCP ˅ HC ˅ HFLP

                                                                                                

             (c) ∂f2/∂H                                                                   (d) ∂f2/∂R

             (e) ∂f2/∂C                                                                   (f) ∂f2/∂F

             (g) ∂f2/∂L                                                                   (h) ∂f2/∂P

Fig. 3. The pseudo Boolean function F2( ), the threshold function f2( ), and the Boolean differences 
for the first scheme in Table 1.
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Scheme 3

Scheme 3 is an alternative remedy for the unfortunate situation in scheme 1. In scheme 
3, the largest district H, is assigned two more votes. Figure 4 is a Karnaugh-map 
representation of F( ) for this scheme designated F3( )   namely:

 F3 ( ) = 12 H + 9 R + 7 C + 3 F + L + P                              (21)

Now, with a threshold of T = 17, we discover that the governing threshold function 
f3( )  for this scheme is nothing but f2 ( ) of Figure 3(b) and Equation (18). Hence, this 
scheme has exactly the same set of MWCs and Banzhaf indices as scheme 2. Again, 
it is paradoxical that by granting more votes to the largest district, the three smallest 
districts cease to be powerless. 

Example 3

We determine the number Nn and the list of all coherent switching functions for 
n = 0, 1, 2, and 3, and then identify among them those that are threshold with majority 
voting. A switching function f ( ) is coherent if it satisfies the conditions of (Rushdi, 
2010, Rushdi and Hassan, 2015; 2016):

(a) relevancy (causality): f ( ) = 0, f ( )  = 1;

(b) monotonicity: {   ≥    } => {f ( ) ≥ f ( )}

The case n = 0

Here f(  ) ε {0, 1}, and hence N0 = 0.

 The case n = 1

Here f (X) ε {0, 1, X, }, and hence N1 = 1, i.e., there is a single coherent switching 
function f (X) of one variable, namely f(X) = X.

 The case n = 2

Consider f (X1, X2) represented by the Karnaugh map of Figure 4(a) which satisfies the 
relevancy condition, with the partial order shown in Figure 4(b) to enforce monotonicity 
{ 0 ≤  ≤ 1}. Since α and β are independent of each other, there are four possibilities 
for a coherent f(X1, X2) as shown in Table 2. All of these are threshold (Rushdi and 
Alturki, 2015). 
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              (a). Relevancy for n = 2.                            (b). Monotonicity for n = 2.
Fig. 4. Visual explanation of (a) relevancy, and (b) monotonicity for n = 2.       

Table 2. Coherent Functions of n =2.

α          β f(X1, X2) Majority Threshold?

0          0 X1 X2 Consensus

0          1 X2 Dictator

1          0 X1 Dictator

1          1 X1  ˅  X2 ------------

However, the function (X1˅ X2) is not a majority-threshold one, it does not allow 
a threshold that is strictly greater than half the sum of the weights. The other three 
functions correspond to the two possibilities of minimal winning coalitions with two 
voters:

Consensus is required (X(a) 1X2).

The system has a dictator (X(b) 1) or (X2).

The case n = 3

Consider f (X1, X2, X3) represented by the Karnaugh map of Figure 5(a) which satisfies 
the relevancy condition, with the partial order shown in Figure 5(b) to enforce 
monotonicity:

0 ≤ 

  ≤  s
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  ≤  r

   ≤  t

  ≤ 1

Each of α, β, γ can be assigned one of the values 0 and 1, independently of one 
another. Corresponding possible values for r, s, and t are shown in Table 3, which lists 
18 coherent functions f (X1, X2,  X3). Out of these, 11 functions are majority threshold, 
namely:

Consensus ( X(a) 1X2X3)

Clique (X(b) 1X2, X1X3, or X2X3).

Chair veto (X(c) 3 (X1 ˅ X2), X2 (X1 ˅ X3), or X1 (X2 ˅ X3))

Dictator (X(d) 1, X2, or X3)

Majority ( X(e) 1X2 ˅ X1X3 ˅ X2X3)

 

 
                                             (a)                                                                  (b)

Fig. 5. Visual explanation of (a) relevancy, and (b) monotonicity for n = 3.
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Table 3. Coherent functions for n = 3.

 α       β       γ r     s     t f (X1, X2, X3) Majority Threshold?

0       0      0

0       0      0 X1X2X3 Consensus
0       0      1 X1X3 Clique
0       1      0 X2X3 Clique
0       1      1 X1X3 ˅ X2X3 Chair 3 veto
1       0      0 X1X2 Clique
1       0      1 X1X2 ˅ X1X3 Chair 1 veto
1       1      0 X1X2 ˅ X2X3 Chair 2 veto
1       1      1 X1X2 ˅ X1X3 ˅ X2X3 Majority

0       0      1
1       0      1 X1 Dictator
1       1      1 X1 ˅ X2X3 -----------

0       1      0
0       1      1 X3 Dictator
1       1      1 X3 ˅ X1X2 -----------

0       1      1 1       1      1 X1 ˅ X2 -----------

1       0      0
1       1      0 X2 Dictator
1       1      1 X2 ˅ X1X3 -----------

1       0      1 1       1      1 X1 ˅ X3 -----------
1       1      0 1       1      1 X2 ˅ X3 -----------
1       1      1 1       1      1 X1 ˅ X2 ˅ X3 -----------

CONCLUSION AND FUTURE WORK

This paper demonstrated the utility of threshold Boolean functions in the understanding, 
study and analysis of weighted voting systems. Many important concepts of these 
systems are given threshold Boolean interpretations, including the concepts of voting 
decision, winning coalition, losing coalition, minimal winning coalition, least minimal 
winning coalition, and the Banzhaf index of voting power. 

As a sequel to this work, we plan to automate our findings so as to be able to 
study larger systems whatever their sizes might be. We also plan to study the effect of 
abstention of some votes on the behavior of the weighted voting system. Further study 
pertaining to the structure and size of winning coalitions (Butterworth, 1971, 1974; 
Russell, 1976; Shepsle, 1974a, 1974b; Nurmi, 1997; Axenovich and Roy, 2010; Kirsch 
and Langner, 2010), is warranted. Detailed comparison is required for the Banzhaf 
index and measures of importance in reliability (Freixas and Puente, 2002; Freixas 
and Pons, 2008; Kuo and Zhu, 2012; Zhu and Kuo,  2014). A hot area of potentially 
fruitful further work is that of mathematics of voting power (Alonso- Meijide et al. 
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2012; Das & Rezek 2012; Morgan & Várdy 2012; Holler & Nurmi 2013; Jelnov & 
Taumam 2014; Houy & Zwicker 2014; Freixas & Kaniovski 2014; Michael & Benoit 
2015).

The present paper is a theoretical investigation of the topic of weighted voting 
systems. To further enhance the engineering utility of this work, we need to find 
mechatronic or electrical devices that can be modeled exactly or partially by the 
voting scenario in our theoretical examples. In fact, the actuation mechanism of 
many electro-mechanical systems are triggered by complex voting schemes similar 
to those outlined in these examples. We hope to report such devices or other practical 
engineering artifacts in a sequel of this work. 
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