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ABSTRACT
This paper presents multiple linear regression (MLR) soil shear strength models developed from electrical resistivity 

and seismic refraction tomography data. The MLR technique is used to estimate the value of dependent variables of 
soil shear strength based on the value of two independent variables, namely, resistivity and velocity. These parameters 
were regressed using regression statistics technique for generating MLR model. The results of MLR model, which is 
based on the estimation of model dependent parameters (Log10 resistivity and Log10 velocity), calculated for p-value, 
are less than 0.05 and VIF value less than 10 for cohesion and friction angle models. This result shows that there is 
a statistically significant relationship between cohesion and friction angle with geophysical parameters (independent 
variables). The estimation accuracy of the MLR models is also conducted for verification, and the result shows that 
RMSE value for predicted cohesion and predicted friction angle is 0.77 kN/m2 and 1.73° which is close to zero. 
Meanwhile, MAPE value was found to be 4.57 % and 7.61 %, indicating highly accurate estimation for the MLR 
models of predicted cohesion and predicted friction angle. Based on the application of near surface, the study area 
was successfully classified into two regions, namely, medium and hard clayey sand. Thus, it is concluded that MLR 
method is suitable in estimating the subsurface characterization that covered more regions compared to the traditional 
method (laboratory test).
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INTRODUCTION
Near surface imaging is one of the most challenging methods in geotechnical and geophysical studies. As emphasized 

in previous studies (Take and Bolton, 2004; Greenwood et al., 2004; Smethurst et al., 2006), the understanding of 
ground subsurface behavior is related to factors including seasonal slope behavior, vegetation contribution, and pore 
water pressure changes. In addition, for an effective slope monitoring study, the measurement of internal factors is 
important and required. Many other researches have used different approaches to investigate the subsurface behavior 
using slope geometry design (Alejano et al., 2007), groundwater table position (Rahardjo et al., 2010), rainfall 
infiltration study (Zhan et al., 2007), pore pressure profile measurements (Huang et al., 2012), and boundary effects 
(Ali et al., 2014). Landslide prediction and slide motion analysis methods were used in Japan by Suwa et al. (2010). 
Near surface study has been a focus study to many researchers other than engineering, as subsurface investigation 
helps understand the nature of soil and its properties, as it influences the stability of civil structures (Roy and Bhalla, 
2017) and also in construction industry (Hytiris et al., 2014). These include geophysicists and geologists, where soil 
and rock are used as their targets, as these mediums played an important role for human sustainability. Besides soil 
and rock, slope stability is another concern matter in subsurface investigation since mass movement events such 
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as landslide and rockfall are related to human and building safety factors. The current slope stability assessment or 
monitoring requires skilled engineers for operation and installation, resulting in a high cost of study, and it does not 
provide large areal coverage as explained by Uchimura et al. (2015). Upon considering factors using sensors, this 
study considers the application of geophysical methods, as it can give large areal coverage. One of the well-known 
methods used for near surface investigation is electrical resistivity imaging (Bery, 2016; Maslinda et al., 2017).

The work by Suzuki and Higashi (2001) used resistivity monitoring inversion data at landslide-slope area. This 
study is focused on groundwater flow after heavy rain, and laboratory experiments were carried out to estimate 
differences in the geological characteristics. Therefore, this method is used because it can provide more information 
related to subsurface compared to borehole record, where borehole only provides subsurface information at a limited 
point of location (Bery and Ismail, 2018). Meanwhile, electrical resistivity method is used for characterization of 
ground subsurface related to meteorite impact study (Kiu et al., 2012). 

Statistical methods have been previously used for predicting properties of soils. Elaoud et al. (2017) demonstrated 
how statistical methods can be effectively used for soil and tractor properties to estimate penetration resistance of soil. 
In their study, there were four different predictors used in the statistical analysis. The predictors were the tractor weight, 
the ground granulometry as its depth function, the humidity variation, and the pressure of wheels.  Besalatpour et al. 
(2013) used a comparison study between multiple linear regression (MLR) models, artificial neural network (ANN), 
adaptive neuro-fuzzy inference system (ANFIS), and generalized linear model (GLM) to predict soil wet aggregate 
stability. Meanwhile, Yilmaz and Kaynar (2011) used multiple regression (MR), artificial neuro-fuzzy inference 
system (ANFIS), and artificial neural network (ANN) models for prediction of swell potential of clayey soils. 

In this study, we proposed a combination of both geophysical and geotechnical methods for shear strength modeling 
using MLR model. The developed regression model is tested for validity and accuracy. The proposed MLR model is 
different from previous statistical approaches (Egbe et al., 2017; Jung et al., 2017), where MLR model is used, but 
prediction accuracy of MLR model was not assessed.  Although Israil et al. (2006) and Chand et al. (2004) considered 
the application of geoelectrical parameters in their model, they excluded the significance of multiple factors. Thus, in 
this study, MLR model is checked for its p-value and variance inflation factor (VIF) for verification before the study 
stretches into final model development.

The proposed multiple regression model in this study depends simultaneously on two predictors, namely, electrical 
resistivity and seismic velocity. The developed multiple regression model can yield a more reliable soil cohesion 
estimation than the traditional method of direct shear test. In addition, we also carried out estimation accuracy 
evaluation on the MLR model and actual data obtained from direct shear test. The developed MLR model is also 
applicable to other areas with similar geological setting. 

GEOLOGICAL SETTING
This study is carried out in Penang Island, Malaysia. Penang Island is governed under Penang State authority. 

This state is one of the most rapidly developed areas, and it is located at north west Peninsula Malaysia (Kong, 1994). 
Penang Island enjoys an equatorial climate, which is similar to other parts of Malaysia.  Its temperature is often higher 
than the mainland, with daytime temperatures ranging between 29 ⁰C and 35 ⁰C. This study area is made up of Penang 
Granitic rocks (Kong, 1994). Generally, Penang Island can be divided into two types of granitic rocks, namely, Type 
I, known as Bukit Bendera, and Type II, known as Sungai Ara (Kong, 1994). 

The study area is located at Minden, Gelugor, and this area is covered by Type II Penang Granitic rock (Figure 1). 
The black box shown in Figure 1 is the location of the study area, Minden. Minden area is characterized by medium to 
coarse-grained biotite granites. The soil of the study area is mainly made up of clayey sand soil with sand domination 
due to weathering process of the granitic rock.
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Figure 1. Geological map of Penang, Island, Malaysia (modified after Abdul Hamid et al., 2019).

MATERIALS AND METHODS
2D resistivity and seismic refraction methods

2D resistivity data acquisition is conducted at the Minden, Penang, using ABEM SAS4000 equipment. This 
equipment is a multielectrode resistivity system, suitable for 2D resistivity surveys. The survey line in this study area 
is selected in university vicinity due to its location away from civil structures, and it is used for the dependent variable 
for the multiple regression model developed in this study. In addition, this study area is suitable for slope monitoring 
purpose. Wenner–Schlumberger array is used as an electrode array because of its potential to resolve vertical and 
horizontal subsurface changes (Bery, 2018). The total survey length for this study is 20 m, with a minimum electrode 
spacing of 0.5 m. According to Okpoli (2013) and Bery (2016), small electrode spacing is capable of providing 
relatively good horizontal resolution compared to a larger electrode spacing. The data acquisition is carried out in the 
morning, because the subsurface is suitable for planting electrodes into the ground. And this approach can reduce error 
in the data set because of the dry subsurface conditions occurring in the afternoon or evening. The data is collected 
automatically using Electrode Selector (ES10-64) equipment. The maximum output of 20 mA and total data stacking 
of 2 were used for this study. The acquired field dataset of resistivity is processed and iteratively inverted using 
Res2dinv software through Least-square inversion process. This software was developed by Loke and Barker (1996). 
A damping factor of 0.05 with a minimum value of 0.01 was employed to increase the accuracy of the calculated 
apparent resistivity. Moreover, finer mesh type and four nodes between adjacent electrodes were incorporated to 
enhance the forward modelling subroutine accuracy. Bad data points in the data set will contribute to a large percentage 
error value of apparent resistivity and will usually be removed using RMS statistical error. The maximum cut-off error 
was set at 30%; hence, only data points with percentage error apparent resistivity of 30% and less were used in the 
final inversion process.
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Seismic refraction method is one of the oldest geophysical methods and has been used for geophysical exploration. 
This method is governed by measuring the time arrival of refracted waves when the seismic wave is produced. The 
recorded waves are detected by a set of geophones planted at the ground surface. In this study, seismic refraction 
method used 15 shot points (including offset locations at ±4m, ±8m and ±12m) and 24 geophones with spacing of 
1.0 m. Seismic data set is then processed using SeisOpt@2D, which is refraction velocity optimization software, and 
the input it requires is first arrival travel times and geometry of survey to derive information of subsurface velocity 
(Optim, 2006).  

The electrical resistivity with topography results for survey area is shown in Figure 2. The electrical resistivity 
result has values ranging from 5 to 1300 ohm m, and RMS error for the topography model is 2.3% (Figure 2). The low 
RMS values indicate that the model is reliable, and there are small changes in resistivity distribution throughout the 
model results. It was observed from the electrical resistivity model that the subsurface characteristics are made up of 
clayey sand as reported by Bery (2016). The resistivity values of 5–700 ohm m are interpreted as region of medium 
clayey sand; meanwhile, resistivity values of 700–1300 ohm m are interpreted as hard clayey sand region. For model 
seismic refraction with topography, it shows that the study area also can be divided into two regions (Figure 3). 
The first region is interpreted as medium to hard soil with velocity values of 150–632 m/s, and the second region is 
interpreted as weathered parent material with velocity values of 632 to 1500 m/s. 

Direct shear test

The geotechnical laboratory test using direct shear is carried out for collected soil samples. This is based on forcing 
soil sample to fail along a plane, while it is being subjected to normal load. The shear stress obtained is defined as 
the shear resistance developed along known sample section area within sliding plane. The Mohr–Coulomb failure 
criterion, expressed in terms of effective stress, will be of the form

                                                                           (1)

where  = cohesion and  = friction angle, based on effective stress. This approach is conducted to determine 
the shear strength parameters (  and ) of soil from known location (distance and depth) along the geophysical 
survey line.

Figure 2. Model resistivity with topography of the study area.
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Figure 3. Model seismic refraction with topography of the study area.

Soil shear strength parameters and geophysical data correlations

The electrical resistivity (ohm m) and seismic velocity (m/s) are generated from the 2D imaging scheme. The 
actual values of soil shear strength parameters (cohesion and friction angle) from laboratory tests were correlated with 
true resistivity and seismic velocity values at the same location (X ) and elevation (Y ). This approach is employed 
to obtain reliable information about the subsurface. Based on the previous study conducted by Bery (2016), the 
relationship between resistivity (model resistivity with topography) and cohesion parameters is given by equations (2) 
and (3). Both equations were used as the actual data, as shear strength of soil parameters is derived from direct shear 
test in laboratory. 

                                                                                      (2)

                                                                                      (3)

Multiple linear regression (MLR) model 

Indicator variables are used to represent qualitative parameters selected for regression models. It is important 
to understand the analysis of variance (ANOVA) using indicator variables, which are the models used to analyze 
geophysical parameters from field study. Consider the following generalized MLR model:

                                                       (4)

where  is the intercept;  and  are the slopes of the regression line with independent variables or predictors 
(  and ), respectively;  is the error term; and lastly, Y is the dependent variable or response as reported in 
Koutsoyiannis (2001). The MLR model developed in this study is used to construct novel models of soil cohesion 
and friction angle based on two geophysical parameters. These two geophysical parameters are set as independent 
variables, known as predictors. In this study, the ANOVA statistical analysis is carried out, and the MLR model used 
two factorial independent variables. Meanwhile, the dependent variable is set as soil’s shear strength parameters 
(cohesion and friction angle). The statistical analysis conducted in this study was done using IBM SPSS software, 
and the significance level (α) is set at 0.05. In other words, the confidence level is 95%. The MLR models used in the 
present study are expressed as equations (5) and (6).
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                                                                  (5)

                                                                 (6)

The electrical resistivity and velocity values are set in  and  terms. According to Loke (2014), 
the complexity of the Earth’s subsurface is nonlinear; thus, it requires the use of nonlinear equation for these two 
geophysical parameters. Therefore, resistivity and seismic velocity data sets obtained from subsurface imaging are 
transformed into nonlinear forms. The coefficients for ,  and  were determined through regression analysis using 
the ANOVA scheme. 

RESULTS AND DISCUSSION
Multiple linear regression (MLR) of soil shear strength models 

The quantitative statistical analysis is carried out using IBM SPSS software for the development of new shear 
strength models. This is agreed by Minichiello (1990), where data are collected measuring parameters and the results 
reported through statistical analyses. In this study, the first null hypothesis is that there is no statistically significant 
relationship between cohesion and geophysical parameters. Meanwhile, the second null hypothesis is that there is 
no statistically significant relationship between friction angle and geophysical parameters. Meanwhile, there are two 
alternative hypotheses used in this study. The first alternative hypothesis is that there is a statistically significant 
relationship between cohesion and geophysical parameters, whereas the second alternative hypothesis is that there is a 
statistically significant relationship between friction angle and geophysical parameters. From the statistical results, the 
p-value of predictors’ parameters is inspected of each of the independent variables. If the p-value is larger than 0.05, 
we cannot conclude that a significant difference exists (over 0.05, not significant). Therefore, there is no significance 
relationship, and thus, both null hypotheses can be accepted, and both alternative hypotheses can be rejected. 

On the other hand, if the p-value of the predictors’ parameters is less than 0.05, there is a statistically significant 
relationship for both MLR models, and thus, both alternative hypotheses can be accepted, while null hypotheses can be 
rejected. The summary outcomes for Tables 1 and 2 using a sample size of 70 showed that the evaluated resistivity and 
velocity parameters have a statistically significant relationship with outcomes. This statistically significant relationship 
is supported by the p-value for each predictor that is found with less than 0.05 (5%). This implies that the significance 
of both selected predictors (resistivity and velocity parameters) at confidence level ≥ 95 % can explain the cohesion 
model (equation 6) and the friction angle model (equation 7), respectively. From the model summary output (Tables 
1 and 2), both coefficients of multiple determination are 0.826; therefore, about 82.6% of variation in cohesion and 
friction angle are explained by resistivity and velocity. The p-value (less than 0.05 (5%) in the ANOVA tables indicates 
that there is a statistically significant relationship between shear strength parameters and geophysical parameters. 

Table 1. Multiple linear regression results for cohesion parameter with geophysical data with cohesion 
as dependent variable.

 Coefficients p-value VIF

(Constant) -7.502 0.008

Log10 ρ 9.555 0.000 1.035

Log10Vp -1.963 0.025 1.035

R Square = 0.826; n = 70
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Table 2. Multiple linear regression results for cohesion parameter with geophysical data with friction 
angle as dependent variable.

 Coefficients p-value VIF

(Constant) 83.650 0.000

Log10 ρ -26.754 0.000 1.035

Log10Vp 5.497 0.025 1.035

R Square = 0.826; n = 70

In addition, the variance inflation factor (VIF) value is less than 10, and it indicates that there is no multicollinearity. 
As the rule of thumb, the value of VIF that exceeds 10 is often regarded as indicating multicollinearity. From the MLR 
analysis, the values obtained for equation (5) were β0 = -7.502, β1 = 9.555, and β2 = -1.963, and for equation (6), they 
were β0 = 83.650, β1 = -26.754, and β2 = 5.497. By substituting all the coefficients into equations (5) and (6), the new 
cohesion  and friction angle  models are obtained as follows: 

                                                (7)

                                              (8)

Appendix A shows normal P-P plot of regression standard residual for dependent variables, and it shows that the 
residuals are normally distributed. Equations (7) and (8) are the new MLR equations having  and  as the dependent 
variables or outcomes with independent variables of resistivity and seismic velocity parameters. According to Israil 
et al. (2006), equations (7) and (8) are referred to as models. Therefore, equations (7) and (8) are considered as the 
new models of soil shear strength parameters with resistivity and seismic velocity as unique independent parameters 
for this study area.

Estimation accuracy 

In estimating numerical outcome with statistical model, two methods, namely, root mean square error (RMSE) and 
mean absolute percentage error (MAPE), are used to examine the strength of estimation between actual and prediction 
values determined. These approaches are important to understand how strong the estimation accuracy between 
prediction values (equations 7 and 8) and actual values (equations 2 and 3) of cohesion and friction angle parameters 
is. The first one, RMSE, is used as a measure of the predicted values as being really matching the actual values exactly 
(Equation 9), and it tells how concentrated the data is around the best fit line. RMSE has the same units as the quantity 
being estimated. RMSE close to zero are indicatives of high accuracy between actual and predicted values.

 Meanwhile, for MAPE, it is the mean difference between the actual values and the predicted values (Equation 10). 
The smaller the value of MAPE, the better (accurate) the model in predicting values. 

                                                                                   (9)

                                                                             (10)

where  is the actual value,  is the predicted value, and n is the total number of observations.
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Table 3 shows the results obtained from sample size of 105 data. The result shows that the cohesion model gives 
low RMSE value (kN/m2) compared to the RMSE value (Degree) of friction angle. The RMSE value of both models 
is found to be less than 2, which indicates that there is a small error between the two data sets; thus, it shows that the 
predicted values are close to the actual values. Then, the MAPE value of both models is found to be less than 10%, 
which indicates that it is highly accurate for predicted cohesion and friction angle values.

Table 3. Summary result for MLR of cohesion and friction angle models.

Model RMSE MAPE

Cohesion 0.77 4.57

Friction angle 1.73 7.61

Sample size, n = 105

Near surface investigation using the MLR models

The last stage in this study is the actual application of subsurface investigation using MLR models. Based on the 
estimation accuracy result (Table 3), the predicted shear strength parameters are acceptable for MLR model using both 
geophysical parameters. 

Firstly, the geophysical data is processed until the final model is obtained. Then, a new excel file is created, which 
contained four parameters, namely, distance (X ), elevation (Y ), and resistivity (ρ) and velocity (Vp) data.  Two more 
new columns are created for predicted cohesion and predicted friction angle parameters using MLR, which indicated the 
same distance and depth with geophysical data sets. Cohesion (equation 7) and friction angle (equation 8) models were 
used to estimate or predict the soil shear strength parameters distribution from the study area. Figure 4 represented the 
predicted cohesion and friction angle parameters using the multiple linear regression (MLR) models. It was observed 
from the final predicted models that the cohesion and friction angle are capable of imaging the subsurface with large 
coverage of parameter’s distribution. The visualization interpretation shows that low to medium cohesion with a value 
range of 13.8–15.6 kN/m2 is interpreted as medium clayey sand (Figure 4). The medium clayey sand zones are located 
nearly at middle part of pseudosections, stretching from 4 to 14 m at depth of about 2 m from the surface. Meanwhile, 
medium to high cohesion with a value range of 15.6–17.04 kN/m2 is interpreted as hard clayey sand. This hard clayey 
sand soil is found to dominate near the surface of the study area. The interpretation for cohesion model is aligned as 
discussion made for the model resistivity with topography (Figure 2). The friction angle model result shows that the 
subsurface can be classified into two zones. The first region with low to medium friction angle with a range value of 
14.5–20 degree is interpreted as hard clayey sand soil. Meanwhile, the second region medium to high friction angle 
with a range value of 20–23.85 degree is interpreted as medium clayey sand soil. The result shows that the greater soil 
cohesion indicated the lower friction angle between clayey sand particles. In addition, interpretation of this soil shear 
strength models can be used to derive cementation between sand grains and electrostatic attraction forces between clay 
particles; thus, direct shear strength increases with the increase of shear strain rate as explained by Bery (2018). 
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Figure 4. Shear strength models using MLR with cohesion (top) and friction angle (bottom).

High soil cohesion zone means that the soil has larger quantity of clay components than low soil cohesion zone 
(lesser clay quantity). Sand is defined as free running soil type, whose strength depends on frictions between particles 
(known as frictional soil). Hard clayey sand indicates that increase in clay element in this soil. Dominant sand grains 
in soil allow water to flow because of the empty space between sand particles unfilled by clay material. Therefore, 
increase in cohesion indicates increase in clay content and reduce in sand content. Meanwhile, increase in friction angle 
indicates increase in sand content and reduce in clay content. These results of soil shear strength models agreed with 
the results from the resistivity model and seismic refraction model (Table 4). It further indicated that low resistivity 
and high seismic velocity as functions of low cohesion and high friction angle values in clayey sand soil. Meanwhile, 
high resistivity and low seismic velocity as functions of high cohesion and low friction angle values in clayey sand 
soil at the study area. 

High cohesion zones are attributed by soils with considerable amount of clay component in the soil compared 
to regions of low cohesion. This property of soil agrees with low amount of moisture content, even though the sand 
particles/grains present in the soil profile permit water passage through its pore voids/spaces. It is likely that the 
amount of sand grains interlocked by increased clay particles is in high expectation, since the soil cohesion changes 
with water content, grain size, and degree of compaction of soils. Therefore, low cohesion values are attributed to 
relative increase in the amount of moisture content as clay particles tend to separate with more moisture and number 
of sand grains, however, opposite behaviour in the friction angle across the model. 

These regression-ships agreed by the developed MLR models for cohesion and friction angle (Equations 7 and 
8) and supported with statistical tests. Hence, the developed soil cohesion model is a reliable tool for near surface 
investigation with the help of geophysical methods. In summary, this newly shear strength model developed from 
MLR is suitable to predict or estimate the subsurface geotechnical parameters at the study area.
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Table 4. Regression-ships of shear strength models and geophysical models from study area.

Material
Resistivity Seismic velocity Cohesion Friction angle

ρ (ohm m) Vp (m/s) c’ (kN/m2) ϕ’ (Deg.)

Medium clayey sand 5 – 700 439 – 632 13.8 – 15.6 20 – 23.85

Hard clayey sand 700 – 1300 150 – 439 15.6 – 17.04 14.5 – 20

CONCLUSION
Two shear strength models are developed using the MLR method, which are cohesion and friction angle. The 

newly proposed shear strength models were generated from geophysical parameters, namely, electrical resistivity and 
seismic velocity. In addition, estimation accuracy analysis is conducted to check the validity of the newly proposed 
shear strength models using RMSE and MAPE statistical methods before generating predicted shear strength models. 
The MLR method was used to predict or estimate the distribution of cohesion and friction angle parameters of the soil 
throughout the survey lines. These two models are reliable to image the subsurface of study area in two-dimensional 
form, which covered more regions compared to traditional method (laboratory). The approach in this study can provide 
a quick and cost-effective prediction of shear strength parameters by geophysical field studies. Further study on the 
estimation accuracy of shear strength models can be achieved by increasing the number of soil samples used for actual 
cohesion values in direct shear test (laboratory). In addition, the developed shear strength models using the MLR 
method might not be suitable for other study areas with different parent materials. This is because the soil condition is 
greatly influenced by various physical factors such as weathering process, rainfall amount, and weather condition. 
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APENDIX A

A normal predicted probability (P-P) plot compares the observed cumulative distribution of the standardized 
residual to the expected cumulative distribution of the normal distribution. The residuals for both dependent variables 
(predicted cohesion and predicted friction angle) are normally distributed when data points cluster to the diagonal 
normality line. 


