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ABSTRACT
pH control is a benchmark for control of nonlinear processes because of its importance in a number of industrial 

process applications. Fuzzy Knowledge Based Control (FKBC) of such nonlinear processes incorporates the method 
for constructing nonlinear controllers using heuristic experience. This paper describes design and implementation of 
adaptive FKBC for a pH neutralization process consisting of strong acid (Hydrochloric acid, HCl) and strong base 
(Sodium Hydroxide, NaOH) streams in the multifunctional Process Control Teaching System (PCT40) with Process 
Vessel accessory (PCT41) and pH Probe accessory (PCT42) of Armfield® Ltd., United Kingdom. The adaptive FKBC 
modifies fuzzy universe of discourse by using adaptive gain matrix based on error and change in error. The adaptive 
FKBC has been tested for servo as well as regulatory operation, and it proves itself to be simple, fast, and providing 
satisfactory performance evaluated in terms of Integral of Squared Errors (ISE). Results of adaptive FKBC for servo 
and regulatory operations have been compared with optimized fuzzy logic control schemes using Genetic Algorithm 
(GA), Differential Evolution (DE), and Particle Swarm Optimization (PSO) techniques. The pH neutralization 
system is interfaced with Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW®) for experimental 
validation of results.

Keywords: strong acid-strong base neutralization process; nonlinear process; pH control; fuzzy knowledge based 
control; adaptive control; intelligent control.

INTRODUCTION
Intense global competition, profit based business strategies, rapidly changing socioeconomic conditions, demands 

of better quality control, increased safety concerns, and stringent environmental norms are prompting many process 
industries to automate their operations using accurate, robust, reliable, efficient, optimal, adaptive, and intelligent 
advanced control system. Control system design is greatly influenced by the amount of nonlinearities present within 
process. Classical controllers such as Proportional-Integral-Derivative (PID) or Proportional-Integral (PI) are adequate 
if the nonlinearity encountered is very mild. In presence of appreciable amount of nonlinearities, however, such linear 
models are ineffective since even small disturbances can force process away from the operating point. A good way to 
compensate processes with known nonlinearities and operating condition variations is use of adaptive control techniques. 
An adaptive control system automatically adjusts its parameter using feedforward, feedback, or both strategies to 
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compensate for corresponding variations in the properties of the process [Shinskey, 1979; Cohen & Friedmann, 1974; 
Åström & Wittenmark, 2008]. Nonlinear dynamics of pH neutralization process lead to development of many variants 
of adaptive control, with popular ones being Gain-scheduling, Model Reference Adaptive Control (MRAC), and 
Self-Tuning Regulator (STR). Gain-scheduling is based on determination of process operating conditions and then 
accordingly changes the controller parameters in order to compensate process variations [Lin & Yu, 1993; Chan & Yu, 
1995; Klatt & Engell, 1996]. MRAC uses a reference model of the process that tells how the process output should 
ideally respond to the command signal [Palancar et al., 1996]. Although MRAC is a good alternative to PID, it has to 
be tuned for each particular process and the tuning depends on the presence of lag, delay, and other factors. For non-
well-known processes, the controller must be tuned experimentally, and it could be a disadvantage from a commercial 
or business point of view. STRs are intended to control systems with unknown but either constant or slowly varying 
parameters. STRs are generally composed of three parts: a parameter estimator, a linear controller, and a block that 
determines the controller parameters from the estimated parameters [Åström et al., 1977].

Fuzzy Knowledge Based Control (FKBC) utilizes fuzzy set theory proposed by Zadeh, which deals with an 
ambiguous and imprecise class of objects, called linguistic variables, and is characterized by membership functions 
with membership degrees assigned between 0 and 1, fuzzy conditional statements, and Fuzzy Inference System (FIS) 
[Zadeh, 1965; Zadeh, 2008]. Mamdani type and Sugeno type fuzzy logic controllers are two generalized and popular 
FKBC schemes [Mamdani, 1974; Mamdani, 1977; King & Mamdani, 1977; Procyk & Mamdani, 1979; Takagi & 
Sugeno, 1985]. FKBC has been widely applied to realize PI, PD, and PID schemes for pH control of neutralization 
process [Palancar et al., 2007; Jiayu et al., 2009; Saji & Sasi, 2010; Karasakal et al., 2013; Heredia-Molinero et al., 
2014; AlSabbah et al., 2015; Kannangot et al., 2015]. Further, many researchers have used FKBC in association with 
neural networks for pH control of neutralization process [Jang & Sun, 1995; Eikens et al., 1995; Chen & Chang, 1996; 
Alkamil et al., 2018]. Additionally, many variants of gain-scheduled and self-tuned FKBC techniques are also available 
in the literature [Adroer et al., 1999; Fuente et al., 2002; Fuente et al., 2006; Babuska et al., 2002; Venkateswarlu & 
Anuradha, 2004; Salehi et al., 2009; Nsengiyumva et al., 2018]. Finally, some recent research works on the design of 
adaptive controller for nonlinear systems using backstepping technology have also been reported in the literature [Yu 
et al., 2018; Zhou et al., 2017; Xiang et al., 2017; Nejati et al., 2012].

Over the last four decades, researchers have proposed many pH control schemes using different techniques such as 
adaptive and intelligent. However, there are still considerable challenges in control of pH neutralization process. First, 
control of pH for strong acid (HCl)-strong base (NaOH) neutralization process has not been investigated extensively. 
Second, many reported works are based on simulation studies only and their experimental validations are often 
lacking. Third, the optimized fuzzy controller parameter values need to be retuned if either operating condition or 
process parameters change, and therefore the performance of adaptive FKBC needs to be compared with evolutionary 
and swarm optimization techniques based optimized fuzzy controller [Singh et al., 2018].

Armfield® pH Neutralization System
Armfield® Process Control Teaching System (PCT40) with Process Vessel Accessory (PCT41) and pH Sensor 

Accessory (PCT42), shown in Figure 1, has been used as a pH neutralization system. Armfield pH neutralization system 
is provided with a software package to facilitate the device interfacing with computer through USB. The device driver 
is installed on 32-bit Microsoft Windows® XP operating system. The system 32 directory contained following device 
driver files: ARMUSB.INF, ARMFIELDLTDTHERMUSB.INF, THERMUSB.SYS, ARMUSB.SYS, and ArmIFD.
DLL. The first two files tell the computer how to recognize the data acquisition card, also called Interface Device 
(IFD), installed within the base unit PCT40 when the neutralization system is plugged in the computer. The next two 
files are the IFD drivers for the USB interface. The last file is a Dynamic Link Library (DLL), which is used to pass 
data between the user program and the IFD driver through USB interface. Based on types of I/O data, i.e., analog and 
digital, user can access, i.e., read and write, data logger for the IFD driver through basic function calls to DLL file. 
Few important pin connections of PCT40 are given next:
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Figure 1. Armfield PCT40 with PCT41 and PCT42 schematic (Courtesy: Armfield Ltd., UK)

Pin 12: Analog input pin 12 corresponds to Channel 11 (Ch11), which gives PCT42 output on 0 to 5 V scale. The 
magnitude of 0 to 5 V is digitized into a 12-bit number. The interface passes a binary value between 000000000000 
and 011111111111 to the computer. 

Pins 22 and 24: Analog output pins 22 and 24 correspond to Digital to Analog Converters (DAC0 and DAC1), 
which give acid peristaltic pump A and base peristaltic pump B speeds, respectively, on 0 to 5 V scale. The magnitude 
of 0 to 5 V is taken from a 12-bit number. Here, the computer passes a decimal value between 0 and 2047 to the 
interface.

Pin 46: Digital output pin 46 corresponds to PCT41 stirrer ON/OFF condition. Here, the computer passes either 
logic 0 or logic 1 to the interface.

Interfacing software LabVIEW® 12.0 communicates with the Armfield pH neutralization system by accessing 
appropriate I/O data of the DLL file, using the following standard call library function node: ReadAnalog11ArmIFD.
DLL (to read analog pH sensor value from Ch11), WriteAnalogsArmIFD.DLL (to write analog pump speed values to 
DAC0 and DAC1), and WriteDigitalsArmIFD.DLL (to write digital logic values to turn stirrer On/OFF).

To calibrate the flowrates Fa and Fb of pumps A and B, pump speeds Sa and Sb are varied from 0 to 100% in steps 
of 5%, respectively. Figure 2 shows the resulting linear calibration curve for pumps A and B flowrates. To calibrate 
the pH sensor voltage VpH, the buffer solution having pH values 4, 7, and 9.2 is used. Figure 3 shows the resulting 
linear calibration curve for pH sensor. Table 1 summarizes important and selected specifications of Armfield pH 
neutralization system. It may be noted that specifications of Armfield PCT40 with PCT41 and PCT42 are comparable 
to parameters of the pH neutralization system available in the literature [Karasakal et al., 2013; Mészáros et al., 2009; 
Wan et al., 2006].
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         Figure 2. Peristaltic pumps flowrate calibration curve.                      Figure 3. pH sensor calibration curve.

To obtain step responses of Armfield pH neutralization system for sampling duration of 300 seconds, the pH 
of the process is initially kept around the neutral point, i.e., pH = 7, with initial speeds of pumps A and B as Sa0 
= 35% and Sb0 = 38.5%, respectively, and thereafter, by keeping pump A speed unchanged at Sa0, a step change 
in pump B speed ΔSb is applied; i.e., the pump B speed is maintained at Sb0 + ΔSb. Figure 4 shows the various 
plot of experimental output for Sa0 = 35%, Sb0 = 38.5%, and ΔSb = 41.5%, 36.5%, 31.5%, 26.5%, 21.5%, 16.5%, 
11.5%, 6.5%, 1.5%, -3.5%, -8.5%, -13.5%, and -18.5%. From experimental data, it is observed that the Armfield pH 
neutralization system is quite nonlinear in nature and it has a dead time of approximately three sampling instants, 
i.e., 3 seconds for all values of ΔSb.

Table 1. Selected specifications of Armfield pH neutralization system.

Parameter Specification

PCT41 process vessel volume 2000 mL

pH of raw water 6.7121

pH of HCl 1.75

pH of NaOH 12.1

Flowrate of pump A for Speed of pump A < 18% 0 mL/s

Flowrate of pump A for Speed of pump A = 18 to 100% 0.2021 to 5.1139 mL/s

Flowrate of pump B for Speed of pump B < 18% 0 mL/s

Flowrate of pump B for Speed of pump B = 18 to 100% 0.2989 to 5.8749 mL/s

Voltage of pH sensor 0 to 5 V

pH range 0.1868 to 13.2438

Sampling period 1000 ms
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Figure 4. Step responses of pH neutralization system.

Adaptive FKBC
The adaptive FKBC structure is based on Mamdani Fuzzy Inference System (FIS), as shown in Figure 5. At 

kth sampling instant, Mamdani FIS has linguistic input variables as normalized error  in pH, and 
normalized change in error  in pH, and linguistic output variable as normalized change in output 

, in %, where K1, K2, and K3 are scaling factors. Each linguistic variable can attain the 
following linguistic values: Negative Large (NL), Negative Medium (NM), Negative Small (NS), Zero (ZE), Positive 
Small (PS), Positive Medium (PM), and Positive Large (PL). The fuzzy membership functions of linguistic variables 
have been shown in Figure 6. Table 2 shows the fuzzy rule table with 49 fuzzy rules for pH control of neutralization 
process. Since fuzzy rules are culmination of experience and knowledge of an operator, the proposed fuzzy rules 
ensure the stability of fuzzy controller. The individual fuzzy rules FRl, l = 1 to l = r = 7×7, can be expressed using 
Eq. (1).

                                             (1)

where  is fuzzy AND operator, and Le, Lce and Lco are the linguistic values of linguistic variables   
respectively.

Application of Mamdani based fuzzy implication to individual activated rules results in output fuzzy sets whose 
membership functions , l = 1 to r,  are given in Eq. (2).

                                                                     (2)

Using max-min fuzzy aggregation to the membership functions  results in an equivalent fuzzy set whose 
membership function  is given in Eq. (3).
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                                                (3)

The defuzzified output  using Centre of Gravity (COG) method is given in Eq. (4).

                                                                         (4)

Figure 5. Schematic of adaptive FKBC of Armfield pH neutralization process.
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Figure 6. Fuzzy membership functions of normalized error/change in error/change in output.

                          Table 2. Fuzzy rule table.                                           Table 3. Adaptive gain matrix K3A.

In this work, we have used feedback control of Armfield pH neutralization process in which under nominal operating 
conditions Controlled Variable (CV), i.e., pH, is maintained at a set-point value  with zero error as input to 
the pH controller, and Manipulated Variable (MV), i.e., speed of base pump B (Sb), and Disturbance Variable (DV), 
i.e., speed of acid pump A (Sa), have values MV0 = 38.5% and DV0 = 35%, respectively. Manipulating variable is 
subjected to a saturation limiter in order to maintain  within bound [MVLB, MVUB], i.e., [18%, 80%]. To evaluate 
the performance of fuzzy logic based pH controller, fitness function ISE(k) is evaluated. Since we are considering a 
real, physical, and constantly stirred pH neutralization process, the initial pH range must be maintained within bound 
[pHLB, pHUB], i.e., [(pHSP)initial + 0.1, (pHSP)initial - 0.1], to ensure approximately the same initial conditions.

The basic idea of adaptive FKBC scheme is to assign various discrete values to scaling factor K3 depending upon 
instantaneous values of variables  and . Eq. (5) gives expression for scaling factor K3 as follows:

K3 = K3A × K3M                                                                                                (5)

where K3A is the discrete component to be determined using adaptive gain matrix shown in Table 3 and K3M is the 
multiplier.
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Table 3 shows values of K3A based on empirical knowledge of the process. To determine the values of K3A, first 
appropriate region of e and ce needs to be identified. Basis of entries of Table 3 has been explained through following 
four cases involving first row of Table 3.

Case 1: If  and  i.e., pH is far away from pHSP and pH is moving either rapidly away from 
pHSP or very slowly towards pHSP, so pH controller needs to take very large corrective action. Thus, we assign K3A 
equal to 8 for this case.

Case 2: If  and  i.e. pH is far away from pHSP and pH is moving slowly toward pHSP, so 
pH controller needs to take large corrective action. Thus, we assign K3A equal to 6 for this case.

Case 3: If   and  i.e., pH is far away from pHSP and moving moderately toward pHSP, so pH 
controller needs to take small corrective action. Thus, we assign K3A equal to 4 for this case.

Case 4: If  and  i.e., pH is far away from pHSP and moving rapidly toward pHSP, so pH 
controller needs to take least corrective action. Thus, we assign K3A equal to 2 for this case.

From Table 3 it is evident that, in order to ensure reduced settling time, K3A has been assigned large values, and 
in order to ensure steady-state response within settling band as error decreases, K3A has been assigned small values. 
Figure 7 shows LabVIEW front panel appearance of adaptive FKBC of pH neutralization process. The LabVIEW 
block diagram for Mamdani FIS based adaptive FKBC structure (AFL01) is shown in Figure 8.

Figure 7. LabVIEW front panel of adaptive FKBC.
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Figure 8. LabVIEW block diagram of Mamdani FIS based adaptive FKBC (AFL01).

RESULTS AND DISCUSSION
In order to evaluate the performance of adaptive FKBC for servoregulatory (SR) operations in pH neutralization 

process, SR operations have been divided into six cases, namely, SR1, SR2, SR3, SR4, SR5, and SR6, to cover 
dynamic pH range from 6 to 9. For servooperations, step changes in setpoint, from (pHSP)initial to (pHSP)final, i.e., 6 to 7, 7 
to 8, 8 to 9, 9 to 8, 8 to 7, and 7 to 6, are introduced for 200 seconds with nominal acid flow rate as Sa = DV0, i.e., 35%. 
For regulatory operations, step changes in disturbance variable, from (DV)initial to (DV)final, i.e., 35% to 30%, 30% to 
35%, 35% to 40%, and 40% to 35%, are introduced consecutively for 100 seconds at each setpoint (pHSP)final, i.e., 7, 8, 
9, 8, 7, and 6. Thus, SRi, where i = 1, 2, 3, 4, 5, and 6, involves servooperation of 200 seconds followed by regulatory 
operations of 400 seconds. Therefore, the entire duration for SR operations is 3600 seconds.

Figures 9(a) to 9(c) show pH response, pump speed variations, and K3 for cases K1 = 10, K2 = 0.5, and K3M = 3 
and 4. Table 4 gives experimental performance summary of adaptive FKBC for servoregulatory operations in pH 
neutralization process. Table 5 gives comparison of adaptive FKBC with optimized Fuzzy Logic Control (FLC) and 
piecewise optimized FLC schemes using Genetic Algorithm (GA), Differential Evolution (DE), and Particle Swarm 
Optimization (PSO) techniques.

The following observations can be made from the obtained results.

(i) The adaptive FKBC for SR operations with K1 = 10, K2 = 0.5, and K3M = 3 gives total ISE as 96.0062 of which 
SR5 and SR1 contributions are 27.4581 and 17.6177, respectively.

(ii) The adaptive FKBC for SR operations with K1 = 10, K2 = 0.5, and K3M = 4 gives total ISE as 79.8271 of which SR5 
and SR1 contributions are 18.3122 and 17.5504, respectively. It is evident that fall time, maximum undershoot, 
and settling time reduced considerably for SR5 in this case.

(iii) Genetic Algorithm (GA), Differential Evolution (DE), and Particle Swarm Optimization (PSO) based optimized 
Fuzzy Logic Control (FLC) for SR operations give total ISE as 80.3776, 67.9637, and 67.9266, respectively 
[Singh et al., 2018].

(iv) GA, DE, and PSO based optimized piecewise FLC for SR operations give total ISE as 66.1221, 64.3561, and 
64.8051, respectively [Singh et al., 2018].
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From the above discussion, it is clear that the performance index ISE obtained in cases of optimized FLC and 
optimized piecewise FLC is better than that in case of adaptive FKBC scheme for SR operations. But optimization 
requires known operating conditions and it may happen that the optimized controller settings are not applicable to a 
new operating condition. On the other hand, the adaptive FKBC scheme has unique advantage of being independent 
of operating conditions and it works very well for unknown operating conditions. 

Table 4. Experimental performance of adaptive FKBC for SR operations.

Parameters
K1, K2, K3M

Servo operation
(200 samples)

Regulatory operation
(100 samples)

Regulatory operation
(100 samples)

Regulatory operation
(100 samples)

Regulatory operation
(100 samples)

(pHSP)initial,
(pHSP)final,
DV

ISE,
maximum  
overshoot / 
undershoot

pHSP,
(DV)initial,
(DV)final

ISE,
maximum 
overshoot

pHSP,
(DV)initial,
(DV)final

ISE,
maximum  
undershoot

pHSP,
(DV)initial,
(DV)final

ISE,
maximum  
undershoot

pHSP,
(DV)initial,
(DV)final

ISE,
maximum 
overshoot

10, 0.5, 3 6,
7,
35

11.3593,
-0.3240 7,

35,
30

1.2801,
-0.3050 7,

30,
35

1.6775,
0.3070 7,

35,
40

2.5100,
0.3580 7,

40,
35

0.7908,
-0.2480

10, 0.5, 4
11.3040,
-0.2100

0.4747,
-0.2100

0.6003,
0.1730

3.0686,
0.3330

2.1028,
-0.4010

10, 0.5, 3 7,
8,
35

7.6813,
-0.1090 8,

35,
30

0.7509,
-0.2680 8,

30,
35

0.9747,
0.2040 8,

35,
40

0.7832,
0.2040 8,

40,
35

0.7255,
-0.2300

10, 0.5, 4
6.2474,
-0.0840

0.5960,
-0.2750

0.6036,
0.1780

0.8839,
0.2670

0.4092,
-0.1860

10, 0.5, 3 8,
9,
35

8.8530,
-0.1170 9,

35,
30

0.4648,
-0.1490 9,

30,
35

0.5276,
0.1770 9,

35,
40

0.5824,
0.1960 9,

40,
35

0.5040,
-0.1680

10, 0.5, 4
9.5923,
-0.0400

0.3008,
-0.1610

0.3171,
0.1700

0.3469,
0.1570

0.3274,
-0.1420

10, 0.5, 3 9,
8,
35

11.6065,
0.0890 8,

35,
30

0.4825,
-0.1860 8,

30,
35

0.5388,
0.1780 8,

35,
40

0.7198,
0.1910 8,

40,
35

0.5510,
-0.2430

10, 0.5, 4
9.7252,
0.0820

0.4366,
-0.1980

0.3592,
0.1460

0.6448,
0.2350

0.4676,
-0.2240

10, 0.5, 3 8,
7,
35

22.9464,
0.6770 7,

35,
30

0.5639,
-0.1840 7,

30,
35

0.7934,
0.2240 7,

35,
40

1.8408,
0.2370 7,

40,
35

1.3136,
-0.3370

10, 0.5, 4
14.7684,
0.4220

0.6536,
-0.2030

0.8880,
0.2620

1.0729,
0.2620

0.9293,
-0.2930

10, 0.5, 3 7,
6,
35

12.4186,
0.1870 6,

35,
30

0.6763,
-0.2460 6,

30,
35

0.6551,
0.2000 6,

35,
40

0.6065,
0.2060 6,

40,
35

0.8280,
-0.2020

10, 0.5, 4
10.3599,
0.0530

0.5604,
-0.1700

0.4816,
0.1680

0.6032,
0.1430

0.7016,
-0.1890
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Figure 9(a). pH responses for K1 = 10, K2 = 0.5, K3M = 3 and 4.

Figure 9(b). Pumps speed variations for K1 = 10, K2 = 0.5, K3M = 3 and 4.

Figure 9(c). K3 for K1 = 10, K2 = 0.5, K3M = 3 and 4.
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Table 5. Comparison of optimized and piecewise optimized FLC with adaptive FKBC for SR operation.

Control scheme Method Experimental ISE

Optimized FLC

GA 80.3776

DE 67.9637

PSO 67.9266

Piecewise Optimized FLC

GA 66.1221

DE 64.3561

PSO 64.8058

Adaptive FKBC
K3M = 3 96.0062

K3M = 4 79.8271

CONCLUSION
In this paper, Mamdani FIS based adaptive FKBC scheme has been implemented on Armfield pH neutralization 

process. The adaptive FKBC uses input scaling factors K1 and K2, and output scaling factor K3. Keeping K1 and K2 
constant, adaptive mechanism actually determines the value of K3, which consist of two components: K3A, which 
has discrete values 2, 4, 6, and 8 based on present error and change in error values, and K3M, which is a magnifier 
that can take integer values. Adaptive FKBC is used for servo- and regulatory (SR) operations in pH neutralization 
process, and its performance index ISE comes as 96.0062 for K3M = 3, and 79.8271 for K3M = 4. In comparison, GA, 
DE, and PSO based optimized FLC for SR operations give total ISE as 80.3776, 67.9637, and 67.9266, respectively. 
Also, GA, DE, and PSO based optimized piecewise FLC for SR operations give total ISE as 66.1221, 64.3561, and 
64.8051, respectively. ISE of adaptive FKBC for SR operations is greater than that for optimized FLC and optimized 
piecewise FLC; however, adaptive FKBC has distinct advantages of reducing design complexity and execution time 
as compared with evolutionary and swarm optimization techniques based optimized fuzzy controller.
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