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ABSTRACT
Robust and load disturbance conditions for state feedback Repetitive Control (RC) are investigated for linear time-

invariant system. The Conditions found sets either an upper limit or lower limit weighting parameter depending on 
the case investigated in the design. The repetitive design investigated is a development of previously reported work, 
where the new design incorporates both past error feedforward and current error feedback rather than a current error 
feedback alone. The design idea is to include a pure delay model acting on the system input representing periodic 
disturbances. Isolating the delay model, finding the overall transfer function around the delay model, and using the 
small gain theorem, a stability condition is obtained that assures overall system stability and periodic disturbances 
accommodation. The conditions found, as the simulation results obtained show, had suppressed the uncertainty effect 
in the case where a weighting parameter is used compared to the case where the weighting parameter is omitted.
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INTRODUCTION
In industry, it is required  from a system to follow pre-defined task for ad-infinitum number of executions known 

as “trials” in a continuous manner without resetting between trials. Repetitive systems are those where the reference 
trajectory required to follow to a high precision is of a repetitive structure (Rogers et al., 2007). One well known 
controller to such systems is the Repetitive Controller (RC), where the persistence of this controller is to learn from 
previous experiences to enhance reference tracking and rejects periodic disturbances continuously (Hara et al., 1988). 
The start of the RC is in the reported work of  (Inoue et al., 1981b), where the objective was to accommodate periodic 
disturbances in power supply control application. The work reported in Inoue et al. (1981a) was introduced to track 
periodic reference in a motion control application. Thus, it is clear that RC has a direct impact on industry applications 
especially those of rotary movement, such as in disc drives  (Moon et al., 1998, Chen et al., 2006), electrical motors  
(Mattavelli et al., 2005), robotics  (Kaneko et al., 1997, Consor et al., 1990), and other systems performing operations 
as such.

The human learning process is the main idea behind RC principle, where it uses previous trials to modify the 
controlling signal such that the overall system learns to follow a periodic reference trajectory with period T to a high 
precision. The research efforts adopted this idea and most of the produced work can be seen in the continuous time 
domain. This is a trend in research efforts due to repetitive system nature, and the use of the time instants t  to form the 
forcing function for t + T in the update law. A good source to RC principle and several designed updating laws can be 
seen in Longman (2010) and Wang et al. (2009). The internal model principle (IMP) was introduced by  Francis and 
Wonham (1975), and since then it became the main principle to all of the RC designs. The IMP suggested modelling 
a periodic signal as an autonomous system inside a positive feedback loop. Then, the fundamental of the small gain 
theorem is used to design the control system such that the overall system is stable to achieve the required task; track/
reject periodic signal without steady-state errors.
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Iterative Learning control (ILC) is another controlling technique used to accommodate periodic disturbances and 
enhances the performance of repetitive systems. ILC controller start is referred to the work proposed by Arimoto 
et al. (1984) where the main task was to use the error signal of the current trial as a forcing function to update the 
control signal for the next trial. Here it can be thought that RC and ILC are the same, but they are not similar even 
though they use the same updating technique. The main difference is that the RC does not reset states between trials; 
system initial states for trial k are those of the final states of trial k – 1 such that , in the sense of 
a continuous periodic signal. In ILC, the system resets to the home position after each trial to start the next trial. For 
a list of controllers differences, the work in Wang et al. (2009) provides a table a comparison between RC and ILC, 
which clarifies those similarities and differences.  

Longman (2000) suggested that the similarities in the general structure of the two methods allow diverting the 
design to lift the batch process description to be formed in a matrix representation. 

Due to system nature, the control problem is stated in 2D formulation, where time and trial indices are both 
considered in designing RC controllers. A uniform structure, which depends on the trial index alone known as a 
lifted form, can be considered in general instead of using time and trial indexes expression. This paper revisits the 
state feedback RC design, then both system uncertainty and load disturbance conditions are investigated to extend 
controller capability against system uncertainty and disturbance rejection to complete the design.

 The design steps start with modelling the periodic signal first as an autonomous system containing a pure delay 
model along the forward path with positive feedback (Inoue et al., 1981b), then it uses the internal model principle 
by duplicating that delay model inside a feedback loop with the RC control, where the delay model affects the system 
output (DeRoover et al., 1997, DeRoover et al., 2000). The work presented in DeRoover et al. (1997) and DeRoover 
et al. (2000) showed that both RC and ILC are not similar, but they are related by duality and the solution found in one 
controller can be used to accommodate periodic disturbances in another under certain structure. This has been done for 
explicit use of current error feedback structure in state feedback and output injection. Freeman et al. (2013) designed a 
modified framework that incorporates both current error feedback and past error feedforward in the design instead of 
using the current error feedback explicitly. It also showed the advantage of using past error feedforward over current 
error feedback to accommodate periodic disturbances experimentally. 

This paper, as mentioned earlier, revisits the RC design within the proposed framework given in Freeman et 
al. (2013), where it incorporates both past and current error signals, in state feedback structure “only”. This paper 
then extended the design presented in Freeman et al. (2013) by including new robust conditions based on the state 
feedback case using singular values, which forms the novelty and the major contribution of this paper. The idea of 
investigating robust boundaries with singular values had been studied earlier; one literature that uses singular values 
method to predict robust stability conditions for milling operation is Hajdu et al. (2017). The conditions found set 
either an upper limit or a lower limit to a weighting parameter to limit the associated uncertainty effect. The conditions 
are expressed in singular values because this design is made for linear systems, and the singular values selection 
gives a direct reflection on vectors weights. Conditions found are different than those in Freeman et al. (2008), where 
the latter discusses  uncertainty condition for  the design in the presence of current error feedback “only” in the 
frequency domain. Simulation results obtained show the reliability of the new design to perform well in the presence 
of modelling mismatch. 

The following section discusses in brief the RC design in the general case under the proposed framework in 
Freeman et al. (2013). Design robustness against unmodelled dynamics of the proposed RC framework is presented 
afterwards. This is followed by Load disturbance limitations conditions. Simulation results are discussed. Finally, 
conclusion and future work are considered.

Controller Design Background
 Start with a linear time-invariant system with m outputs, p inputs, and n states, having a discrete overall transfer 

function in the state space form given by . The matrices A, B, C, and D are of valid 
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dimensions. Also assume the system output to be y(z) and u(z) is the system input, then the process output equation 
is given as .

A lifted form describing the system can be considered, for a “ single trial ” with a finite time duration; N samples, 
the model of the system dynamics at a trial k can be written as

                                                                                   (1)

where . From above, RC controller does not reset to the initial state after each trial. Now, introduce the 
input and output vectors as 

  The process dynamics for each trial can be written as 

                                                                                                          (2)

 with the process matrix P defined as 

                                                

(3)

  where the elements of P are the Markov parameters. Similarly, define the reference in discrete form, to hold the 
vector elements of 

  

 The block  in the RC control problem structure given in Figure 1 is a diagonal transfer function matrix, 
which has an internal model representation along its diagonals. As  DeRoover et al. (2000) pointed out, in RC case, 
there are m channels as the block operates in the output space with N state variables.

Figure 1. RC as a feedback problem (Freeman et al., 2013).

The autonomous system consisting of a positive feedback control loop with a pure time delay in the forward path 
with appropriate initial conditions representing a periodic disturbances can be modelled with a signal of length N in 
discrete-time as 

                                                                                               (4)
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 where the  matrix Aw is given by 

and the  row vector  as .

The control problem then can be defined as the need to find a robust controller K(z) (where z denotes the discrete-
time delay operator) for the robust periodic control problem that fulfills the following:

Given a  transfer-function matrix P(z) with an input vector consists of the plant input and a disturbance 
input; , the output signal as defined in (2) and a reference signal   with N 
sampling time. It is required to design K(z) such that 1) the overall closed loop system is asymptotically stable. 2) The 
tracking error, , tends to zero along the trial domain. 3) The conditions above are robust.

The solution considered in  DeRoover et al. (1997) and DeRoover et al. (2000)  uses the internal model principle, 
as well as the small gain theorem to set stability conditions to design the feedback gain and the observer gain using 
Linear Quadratic Regulator (LQR), where the periodic disturbances act on the system output. Freeman et al. (2013) 
considered a more general case as it incorporates both current error feedback and past error feedforward in the designed 
framework instead of the current error feedback alone. 

This paper reintroduces the RC design scheme in state feedback reported in  Freeman et al. (2013) with different 
stability conditions depending on the error case considered: current error or past error feedforward. The RC design 
(Freeman et al., 2013) is explained in brief next and the stability conditions, which form the novelty of this paper for 
each case, are introduced later.

RC Controller Design via State Feedback
Consider the system in (4) for a single channel; also introduce the following  vectors: 

and 

 

For a multi-input multi-output (MIMO) case define the diagonal matrix Ar consisting of Aw along its diagonal,

Br, Cr and Dr are also defined the same as well, where each diagonal block is repeated m times (acting on the 
system output). Thus, considering the periodic problem proposed in Figure 1, the transfer function of the delay model, 
Φ(z), is given as

  The overall idea of the design considered that uses the state feedback in  Freeman et al. (2008; 2013) is to combine 
both the plant and the internal model in one structure as
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           (5)

Stabilising this system guarantees periodic disturbances accommodation since the output of the combined system 
is the plant output and its input is the control input signal,  where xr is the internal model system state. Manipulating 
the combined system and choosing the control input of the combined system to be

                                                                                                
(6)

adding an observer to estimate the combined system states, this in turn will end up with the overall system of the 
form  (Freeman et al., 2013)

 
 

                                                        
(7)

  As the internal model principle suggests, the design at this stage requires isolating the delay  and finding the 
overall transfer function, H(z), that links its output by its input.

 Stability condition following the small gain theorem then would be

                                                                                                                  (8)

The overall transfer function around the delay operator, H(z), definition differs depending on the error case 
considered for either past error feedforward or current error feedback, for Past error feedforward case, H(z) is 
defined as 

                                                                                    (9)

  while in the Current error feedback case 

                                                                                    (10)

 G(z) in both cases is governed by the following: 

 
      

(11)

Solving the Linear Quadratic Regulator (LQR) via the Riccati equation as Freeman et al. (2013) suggests is the key 
to find the state feedback solution, K, such that the model to consider is the difference between the combined system 
and the estimator structure to minimize the defined cost function.

Robust Conditions for RC Design in State Feedback
 Modelled systems do not hold the exact model description, or they suffer from the non-linearities at high 

frequencies. It is required to complete the design to investigate the design robustness and set conditions for system 
stability under such model mismatch. In this section the robust stability conditions are set for the RC control in  
Freeman et al. (2013)  in past error feedforward and current error feedback. This is based on the stability condition 
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assigned in (8). The previous reported works did not discuss this subject in Singular Values concept, which forms the 
main novelty of the work presented in this paper since the system considered is linear time-invariant. In Freeman et 
al. (2008), the algorithm robustness was discussed in the frequency domain for the case of current error feedback only. 
We start with the stability condition given in (8) and considering the following cases: 

 • Current error feedback in state feedback design.
The starting point is the stability condition given in (8), where the induced norm is required to be less than 1 

to guarantee system stability. Consider the system uncertainty to be (∆) acting on the system in operation. Define 
, where  are the nominal plant, plant uncertainty, and the uncertainty weight, respectively. 

Each of the defined variables is assumed stable, causal, and linear time invariant for simplicity, in combination with 
the more conservative definition of H(z) given in (10) in terms of singular values as (Ringwood, 1995) 

 
                                                                                 

(12)

  where  represents the maximum singular value and  is the minimum singular value. The above again can 
be manipulated to give 

 
                                                                        

(13)

 Since the uncertainty assumed to be stable ( ), then equation (13) can be written as

                                                                               
(14)

Equation (14) will give the proper condition for the weighting factor (W ) such that the left hand side is minimized, 
which gives the choice of the numerator to be selected as

                                                                  
(15)

 The above defines the weighting parameter such that its upper limit is less than 1 and its lower limit is the right 
hand side of (15). Thus it sets a lower limit to the weighting parameter. 

Note that  unless G is scalar multiplied by the identity, which is not true in our design.

• Past error feedforward in state feedback design.
The starting point again is the stability condition given in (8), which requires that the induced norm to be less than 

1 to guarantee system stability. As pointed earlier, a more conservative restriction is to consider the singular values; 
instead, the stability condition then is written as

  Verifying this condition in the maximum case assures reference tracking and periodic disturbances accommodation. 
Following the same assumptions, define [ ], where  are the nominal plant, plant uncertainty, 
and the uncertainty weight, respectively. Each of the defined variables is assumed to be stable, causal, and linear 
time invariant for simplicity. In combination with the definition of H(z) given in (9), we can write the following 
derivation:
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with singular value properties, it can be written as

 where this option is the only choice that can guarantee keeping the left hand side to its maximum and not to exceed 
the right hand side. Now, taking the uncertainty part in one side and the other parts to the right side yields

                                                                (16)

 maximizing the left hand side will give the possible variation in system dynamics, right hand side, and sets the 
upper bound for the system not to have unwanted performance through the operation. This can be found if the right 
hand side was of the form . Extending the previous property sets the uncertainty weight that gives 
an upper bound and permit the design to perform better in the case of model mismatch

                                                                        
(17)

 maximizing the left hand side of equation (17) such that the right hand side is kept minimum can be seen as 
solving the following: 

 
                                                          

(18)

 To suppress the uncertainty effect to a higher level, further investigation toward the weight (W ) is taken into 
account and can be expressed, with the fact that , in the following: 

 
 

                                                                  
(19)

 Condition (19) now sets the upper limit to the weighting factor such that uncertainty is extended and the 
performance is enhanced. 

Condition (15) is the same as that in (19) to a limit where in (15) it sets the lower limit to the weight selection while 
(19) sets the upper limit to the uncertainty weight, which has a wider and better range than that of (15). 

The next section discusses load disturbances case and sets disturbance conditions to complete the design given 
earlier in Freeman et al. (2013), which is the second part of the novelty introduced within this work.

Load Disturbances Conditions in RC State Feedback Design  
 Define for now the system described in (1) in single-input single-output case in terms of load and measurement 

disturbances, dk(t) and nk(t), respectively, as 

                                                                       (20)

                                                           (21)

 where the load disturbance dk(t) can be described as a non-periodic disturbance acting on the system input and 
tends not to make the error goes to zero as long as it affects the operation. The subscript k represents the iteration 
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index and q is the forward shift operator. The time delay operator, δ, is inserted in the output equation. Without loss of 
generality the process matrix P(q ) is assumed not to have a delay. At the start of the operation, the state of the system 
starts from a home position and continues to move on within the required path as the operation continues. Thus it is 
assumed that the number of samples in one operation/iteration is N + δ.

Now, if a control action takes place at time t = q, the system will respond when t = q + δ. Thus, it is trivial to control 
the output Ψk(t) in repetitive control lifted form at times , using the input uk(t) at times . 
The reference  is then defined over the period , and the control problem would be as to 
let Ψk(t) to follow r (t) as close as possible, where r (t) is periodic. 

Within the same context, the description given in (20) and the control input signal uk(t) defined earlier, the output 
Ψk(t) for trial k can be defined as

                                                 (22)

The load disturbance vector dk is analogous to uk(t) and the measurement disturbance nk, the measured output 
vector yk and the reference vector r are defined analogous to (22). Required assumptions are made about dk and nk 
where (i) they are zero mean. (ii) They are uncorrelated with each other. (iii) They are uncorrelated between iterations 
(Johannes et al., 2014). To examine the load disturbance limitation such that it does not effect system performance and 
tends to stabilize the response, let us start with the stability condition described in (9) for the state feedback design 
with past error feedforward case, as well as the output described in (20) to form the following path using the singular 
values

                                                                            (23)

  which can be further reformed to the following: 

  

                                       (24)

  Maximizing the effect of the load disturbance, it is written in one side and the other parameters in the other 
side as 

                                              
(25)

  This condition clearly says that the maximum singular value of the load disturbance allowed acting on trial k has 
to be less than the maximum singular value of the difference of the sum of all previous trials output eigenvalues minus 
the sum of previous trial load disturbances and the initial input response as well as the minimum singular value to last 
trial control action. If this condition is not met, then the system will become unstable. This builds a range where the 
load disturbance acting on any trial k is very restrictive and has a small range of variation in terms of its maximum 
singular value. Equation (25) can also be modified if the second part of the right hand side was further investigated to 
give the form of 

                                                                             
(26)
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 which makes the condition given in (25) as

                  (27)

  The above condition sets the upper limit of the load disturbance acting on trial k such that the overall performance 
does not lose stability. If this condition was met and the load disturbance has a smaller value, then the system will 
remedy the influence of the disturbance as the repetitive controller will tend to learn to produce the proper input signal 
such that the error tends to zero along the operation.

 On the other hand, the current error feedback case tends to hold the same condition as that of the past error 
feedforward. It is left for the reader to follow the same steps by starting from the stability condition and follow the 
same direction. The conditions in past or current error feedback do make sense since the load disturbance can affect 
the operation at any trial k; thus it has to be of a form that contains its weight. Disturbance suppression can be made 
if its maximum singular value follows the condition found in (27).

SIMULATION RESULTS

A non-minimum phase plant (NMP) is simulated for the proposed conditions. The NMP  had been tested in many 
reported works in different RC and ILC schemes experimentally (Freeman et al., 2005, Alsubaie et al., 2008, Cai et 
al., 2008). Such systems are very known to compromise problematic mathematical structures and controlling those 
systems is a challenging task. Here in this section, simulation results are presented that show the proposed conditions 
success in enhancing performance against uncertainty associated with system modelling mismatch. 

Due to the presence of the right half plane zero in the NMP plant mathematical description, such presence makes 
this system hard to test in RC arena due to the instability associated with plant inversion. Thus, any sudden change in 
system dynamics would result in unstable response. The mathematical equation describing the NMP simulated can be 
found in Freeman et al. (2008) and is given as

                                                                    
(28)

For a detailed description of the facility, refer to Freeman et al. (2005). 

The NMP was sampled at a sampling frequency of 100Hz and a reference of 4 seconds is applied creating 400  
samples to record in each cycle. The system is operated for 20 cycles. This system was tested in two different cases, 
with and without the weighting factor presence. Figure 2 shows a comparison of the mean squared error for different 
variations in the entries of  matrix (A) for  20 cycles. The red line in the figure shows an error divergence for the case 
where the weighting parameter was omitted. The entries of matrix (A) were changed by 5%, and this means that the 
system will not learn to follow the reference with minor difference in dynamical model description. On the other hand, 
the other lines in the figure show an extension in system stability against uncertainty up to 10% change in matrix (A) 
entries and as low to almost 10% in such difficult system, where the weighting factor limit in past error case is found 
with equation (19) to be 0.8176 and the selected weighting parameter is chosen to be half of the limit found, 0.4088 
. Thus it can be concluded that the design is more robust with the conditions found and the response is acceptable up 
to a mismatch of 10% change in the matrix (A) entries for the selected weighting factor compared to the case where  
weighting factor was omitted and applied as can be seen in Figure 2.
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Figure 2. Mean squared error for the NMP output with/without the w.f.

Figure 3 shows the output response in different cases for 20 cycles with the presence of the weighting factor. It can 
be noticed that system uncertainty was extended up to 10% with stable response and decaying error along the cycle 
axis.

  Figure 4 clarifies the norm of the input demand with the presence of the weighting factor where it forms an input 
region that gives the input high and low possibilities based on the model mismatch. This region is also compared to 
the case where no weighting factor is applied (red dots), where it shows a possible variety of no more than 4% change  
in system dynamics. Thus the conditions given and proposed in this reported work extend the range of learning for 
the reported design in the RC part to overcome system perturbation compared to the case where no weighting factor 
is applied.

Figure 3. The output responses for different variations in  matrix (A) with the w.f. applied.
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Figure 4. The input demand range for several variations in the matrix (A) with/without the weighting factor.

Conclusions and Future Work
In this paper conditions are set to extend linear system uncertainty based on the singular value principle for the RC 

design in state feedback. Different cases have been discussed and conditions are found that extend system robustness 
against system unmodelled dynamics. Load disturbance conditions also were investigated and found to set a limit 
where if violated will result in system instability. Reported simulation results show the weighting factor success to 
extending the range of uncertainty considered with the RC design via state feedback. High level of reference tracking 
is achieved for up to 10% change in system uncertainty in the NMP model. Future work will consider implementing 
those found conditions and verify their success experimentally.  
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