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ABSTRACT
Estimating flaw profiles from measurements is a typical inverse problem in magnetic flux leakage (MFL) testing. 

Defect profile reconstruction implies the reconstruction of defect parameters and profiles based on detected MFL 
signals, and it is of importance in achieving the MFL inversion. Through establishing the state-space model of the 
defect profile and the measured MFL signals, this paper formulates the inverse problem as a tracking problem with 
state and measurement equations. Three state-space methods, i.e., extended Kalman filter (EKF), unscented Kalman 
filter (UKF), and particle filter (PF), are employed to solve the inversion problem, which is described as the classical 
discrete-time tracking problem on the basis of state and measurement equations. The results illuminate that the three 
state-space approaches are effective and feasible ways of MFL inversion. Furthermore, by comparing the reconstruction 
performances, it can be found that the particle filter-based inversion approach is superior to the other two methods in 
actualizing MFL inversion owing to its accuracy and robustness against noise.

Keywords: profile reconstruction; magnetic flux leakage; extended Kalman filter; unscented Kalman filter; particle 
filter.

INTRODUCTION
Magnetic flux leakage (MFL) testing is one of the most widely used techniques in the field of electromagnetic 

nondestructive evaluation (Priewald et al., 2013) (Sun et al., 2016). In the MFL testing, it is of significance to estimate 
the defects profile from inspected MFL signals using an efficient solution for an inverse problem (Ravan et al., 2010). 
The inverse problem means defect information estimated by inversing methods, and it can be classified into shape 
parameters and the reconstructed defect profile (Smorodinskii et al., 2013) (Mukherjee et al., 2013). This inverse 
problem is an ill-conditioned issue due to the nonuniqueness of the solution, especially in the existence of noise (Khan 
et al., 2008). 

So far, some researches are carried out on the reconstruction of defect profile from inspected MFL signals. As early 
as 2002, P. Ramuhalli et al. proposed a neural-network-based inversion algorithm for estimating the defect profiles 
from measured MFL signals and applied this algorithm to simulated MFL data (Ramuhalli et al., 2002). Xu et al. 
(2012) presented an improved finite-element neural network implanting a FEM in a neural network structure to solve 
the forward model in MFL testing, and a conjugate gradient method is used as the learning algorithm. W. H. Han et 
al. combined the cuckoo search and particle filter to estimate the defect profile from the inspected MFL signals and 
applied a radial-basis function neural network as a forward model (Han et al., 2016). The combination model of the 
radial wavelet basis function neural network and kernel partial least squares was proposed in Xu et al. (2013), and it 
was utilized to multiresolution approximation reconstruction of 2D defect profiles in MFL testing. J. Feng et al. put 
forward a sensor liftoff modification approach of an MFL signal to increase the estimation performance of the defect 
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profile, and the proposed approach can improve the signal-to-noise ratio and estimate the profile more accurately 
(Feng et al., 2017). Lu et al. (2017) proposed an effective approach to reconstruct the arbitrary defect profiles in 
different velocity conditions and demonstrated that the proposed method can achieve better reconstruction accuracy 
than the ignoring velocity effect models. An efficient method based on axial MFL level profiles was designed to 
estimate the defect length in Kandroodi et al. (2017), and this method employed the patterns of signal level profiles in 
the region corresponding to the defect’s area. As can be seen from the above examples, the neural network is the main 
method for solving the MFL inverse problem. Nevertheless, the neural network-based method has the drawbacks that 
the precision heavily depends on the training database and is sensitive to noise.

This paper presents three approaches of 2D defect profile reconstruction from detected MFL signals, including 
extended Kalman filter (EKF), unscented Kalman filter (UKF), and particle filter (PF) approaches. It is unnecessary 
for the three methods to train the samples so that they are very simple to achieve. The EKF is a simple but powerful 
approach for the identification of structural parameters, treating the unknown structural parameters as part of the 
states to be estimated (Pan et al., 2016); therefore, it is widely used in state estimation and fault diagnosis (Delgado-
Aguiñaga et al., 2016) (Bonnet et al., 2016). However, the EKF has some well-known weaknesses; for instance, when 
sampling rate is not high, the filter shows a tendency for instability inherently caused by the linearization involved 
(Kumar et al., 2011). The UKF is a relatively new member of the Kalman filter family (Astroza et al., 2016) and it 
is an effective nonlinear filtering method widely applied in parameters prediction and estimation (Li et al., 2016). 
Unlike EKF, it applies a deterministic sampling approach, called unscented transform, to calculate the current mean 
and covariance of states. This filter provides a recursive mean for state estimation of any dynamic system from some 
of the state functions or measured state (Gurung et al., 2016). However, the UKF approach is more computationally 
intensive than EKF. 

It is well known that the PF is a powerful tool based on Monte Carlo simulations and recursive Bayesian estimation, 
approximating the posterior probability distribution by searching a series of random samples in the state space (Yuan 
et al., 2011). The PF method has the advantage in dealing with nonlinear or non-Gaussian dynamic systems (Zhou 
et al., 2016), owing to the fact that any probability distribution can be approximated to any desired accuracy if given 
sufficient particles (Zuo et al., 2013). The basic PF is subject to the degeneracy problem and can be alleviated by 
resampling techniques (Gonzales et al., 2015). But the resampling stage will result in the loss of sample validity and 
diversity, leading to sample impoverishment.

In this paper, the three fore-mentioned methods are applied to reconstruct the defect profile from obtained MFL 
signals, and the performances of the reconstruction are compared by the evaluation indexes. The inverse problem 
is formulated as a classical discrete-time tracking problem with state equation and measurement equation; i.e., the 
sequence of defect profile denotes the state transition model and the inspected MFL signal represents the measurement 
model. As a result, the state-space model of defect profile and MFL signals is achieved using EKF, UKF, and PF 
approaches.

THEORY OF FOUNDATIONS
Estimating defect profiles from measurements is a typical inverse problem in electromagnetic nondestructive 

evaluation. This paper proposes a state-space approach for solving the inverse problems in MFL testing. The approach 
formulates the inverse problem as a tracking problem with state and measurement equations. Meanwhile, the three 
filtering methods are applied to reconstruct the defect profile.

State-space model
We present this to model a dynamic state-space problem through using two different equations (Li et al., 2011) 

(Nobrega et al., 2015), i.e., a state transition equation that is employed to model the evolution of the states with 
position and a measurement model that relates the measurements to the states at a given position k:
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                                                                                (1)

                                                                                        (2)

where x(k) denotes the state of the system, and z(k) is the measurement signal. w(k) represents the process noise 
supposed Gaussian with zero mean and with variance Q, v(k) denotes the observation noise supposed Gaussian with 
zero mean and with variance R.  f [•] and h[•] are nonlinear functions that model the state transition process and the 
measurement process, respectively.

The state-space model is similar to the classical discrete-time tracking problem for MFL testing. In this paper, 
we assume that  is the sequence of defect depth and  is the 
measured value of the MFL signal, as shown in Figure 1. x(k) denotes defect depth and z(k) represents the detected 
MFL signal at location k. So the dynamic state-space problem can be modelled with two different equations, which 
are in coincidence with Eq. (1) and Eq. (2).

Figure 1. The state-space model of MFL testing.

Extended Kalman Filter
Since the Kalman Filter (KF) is a linear algorithm; it can only guarantee a local convergence of the estimates. 

However, the EKF is able to give satisfactory results and is a simple but powerful tool for the identification of 
structural parameters, such as the defect profile reconstruction in nondestructive testing, so it is widely used in state 
estimation problems (Lindgren, 2015).

In Eq. (1) and Eq. (2), the functions f [•] and h[•] are presented by Taylor series expansions as follows:

                                                           
(3)

where

                                                                                        
(4)

                        



Comparison of three methods of 2D defect profile reconstruction from MFL signal118

                                                                                       (5)

The algorithm of the discrete EKF is given as follows (Bressel et al., 2016):

(1) Initialization

(2) Prediction

(3) Correction

Unscented Kalman Filter
Supposing that x is an n-dimensional random variable, its mean is  and variance is P. According to the additive 

noise model in Eq. (1) and Eq. (2), the UKF procedure is as follows (Cang et al., 2015):

(1) Initialization

(2) Calculation of sigma points

The sequence of sigma points is

                                                          

(6)

where ,  is the i-th column of matrix square root.

The weights of sigma point sequence are

                                                          

(7)

where  and  are the weights of the first-order and second-order statistical properties, respectively. Constant  
determines the spread of sigma points around the state estimation , and constant  is used to merge part of the prior 
knowledge of the distribution of state vector x.
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(3) Sampling points

According to Eq. (6) and Eq. (7), to obtain a set of Sigma points as follows,

(4) State prediction

(5) New Sigma points

(6) Measurement prediction

(7) Update

(8) Prediction
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As a nonlinear estimation method, EKF is widely used in state estimation, but this approach has some shortcomings 
such as the requiring state dynamics to be different and susceptibility to divergence in state estimate (Wu et al., 2010). 
The UKF adopts the nonlinear model instead of linearization directly. According to a series of deterministic samples, 
it improves the filtering effect of nonlinear system by approximating the posterior probability density of state and the 
probability distribution of nonlinear functions. What is more, the UKF has the second-order Taylor series expansion 
while EKF is accurate to the first order for arbitrary nonlinearity (Jung et al., 2014).

Particle Filter
According to a sequential Bayesian estimation framework, if the initial probability density function (PDF) of 

the state  is known, the posterior PDF  of a state can be obtained through using a series of 
measurements at time k, and then the state estimation can be realized (Leng et al., 2012). It is assumed that initial PDF 

. To obtain the posterior PDF , two steps are performed as follows.

Step 1: State prediction

Step 2: State update

By applying sequential importance sampling (Ibrahim et al., 2015), the estimation of

 can be achieved by the recursive propagation of weights,

                                                         
(8)

where  is the weight of the k-th particle at time i, and δ(x) is the Dirac-delta function by letting ( ) ( )x k q x∼  
be an importance density.

There is a fatal disadvantage in existence with PF, i.e., weight degeneration (Han et al., 2016). The phenomenon 
is that one of the normalized weights inclines to 1, and others become inappreciable. The weight degeneration implies 
that a great deal of calculation is wasted on particle updating, which have a little contribution to the approximation 
of the posterior probability density. In order to prevent the weight degradation, currently, resampling is the main 
approach to solve the problem, and it is applied to discard particles with low weights and propagate particles with 
high weights.

The resampling method used in basic PF is based on probability accumulation. It is assumed that  is 
the state sequence before resampling and  is the one after resampling. The particle set of the posterior 
distribution of the target state is assumed to be  at time k-1. Then the specific implementation 
steps of the PF algorithm are as follows (Zuo et al., 2016):

1) Importance sampling

2) For 

3) ( ) ( ( ) | ( 1), ( ))i i ix k q x k x k z k� � �∼

4) According to the current observation z(k), the weights of each particle 1{ ( )}i N
ix k�  are calculated as follows,
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6) Normalized particle weights  

7) Resampling. The effective sample number Neff is computed as follows,

    

8) If 

9) Resampling particle  to obtain a new particle set:

    

10) Else 

11) End If

12) State estimation: 
1

ˆ( ) ( ) ( )
N

i i

i
x k k x k�

13) End For

Reconstruction of defect profile
Establishment of state-space model

Based on the foregoing analysis, the primary purpose of this paper is to reconstruct the defect profile from MFL 
signals. The reconstruction process can be described as a tracking problem by establishing the state-space model.

In this study, at location k, it is assumed that  is the sequence of defect depth, 
denoting the state transition model of state-space model, and  is the inspected MFL signal, 
representing the measurement model. 

The process of the 2D defect profile reconstruction of MFL testing is shown in Figure 2. The state transition 
probabilities were selected such as to allow a higher probability of staying at the same depth and lower probabilities 
of the profile transitioning to other depths. When solving the problem of profile reconstruction, the defect profile is 
predicted from measurement sequences on test data in this paper.

Figure 2. Defect depth reconstruction from MFL signals.

Establishment of MFL testing
In this paper, the two-dimensional MFL data simulated by finite element method software ANSYS are used to 

evaluate the performance of the profile reconstruction problem. To acquire the data of both the state transition model 
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and the measurement model, an experiment is carried out on rectangular cracks to achieve the MFL data and the true 
defect profile. The model of MFL testing is shown in Figure 3.

In order to apply experimental MFL signals, which are gained from the practical detection, to testing the method 
presented in Figure 3, a 2D finite element model is established in the same size and materials as the experimental one. 
In this experiment, the specimen adopts a solid sucker rod with a diameter of 19.05 mm, and the material property is 
made of X52 steel; its B-H curve is shown in Figure 4. The MFL testing of the defect is carried out by applying the 
double DC coils magnetization approach. The coils are composed of multilayer winding. The number of turns is 500; 
the inner diameter, the outer diameter, and the length are 17 mm, 48 mm, and 41 mm respectively. Rectangular defects 
are manufactured with different dimensions in the sucker rod. 

The Hall sensor is selected to collect the MFL signals, the type is A1302, and its sensitivity is 1.3 mV/G. The 
experimental data is acquired after a denoising process.

Figure 3. 2D model of MFL testing.

Figure 4. The B-H curve of X52.

RESULTS AND ANALYSIS
A state transition model is established according to the defect profile, and a measurement model is also built based 

on the inspected MFL signals. Three filter approaches are applied in achieving the reconstruction of defect depth. We 
introduce the root-mean-square error (RMSE) and signal to noise ratio (SNR) between the true and estimated profiles, 
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which are calculated to evaluate the performance of the three approaches. The definitions of RMSE and SNR are as 
follows:

                                                                       
(9)

                                                      
(10)

Reconstruction of simulation data
The data used in defect profile reconstruction is generated by the use of the finite element model described above. 

To obtain the defect database, a multilevel flaw of rectangular cross section is machined in the test-piece, and the 
reconstruction of defect depth profile from MFL data is analyzed.

Figure 5. Comparison of the estimated profiles by EKF, UKF, and PF.

The reconstruction results of defect depth using EKF, UKF, and PF are shown in Figure 5. The reconstruction 
results with different variances of the process noise Q and measurement noise R are given in Fig.5 (a) to Fig.5 (d). 
As can be seen, the three reconstruction methods can be realized in reconstructing the defect depth, but it can also be 
observed that the reconstruction effect of PF is far better than that of EKF and UKF. 
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Table 1. Performances of the three approaches.

Index EKF UKF PF Conditions
RMSE 2.6142 0.9088 0.1210 Q=5

R=5SNR 17.7542 26.9314 44.4455
RMSE 3.6971 0.9132 0.1872 Q=10

R=10SNR 14.7437 26.8895 40.6553
RMSE 4.7872 1.3823 0.2347 Q=15

R=15SNR 12.4992 23.2887 38.6894
RMSE 5.4301 1.6234 0.2660 Q=20

R=20SNR 11.4047 21.8922 37.6036

Table 1 lists the comparison of the reconstruction performances with different variances using the three 
reconstruction approaches. RMSE is used to measure the deviation between the observed value and the true value. If 
the value of RMSE is smaller, the reconstruction performance would be considered good, indicating that the actual 
profile approximates the estimated profile. SNR is the anti-interference ability of the reconstruction method for different 
noises (process noises and measurement noises). The greater its value, the stronger the anti-interference ability of the 
method. As shown in the table, reconstruction RMSE and SNR are different when the variances are diverse, but the 
reconstruction can be successfully completed as noise exists. In addition, RMSE increased and SNR decreased with 
increasing variances being observed from the table; meanwhile, the reconstruction performance of PF is better than 
that of the other two methods, possessing beautiful robustness.

Reconstruction of experimental data
Different from simulated MFL signals, the experimental MFL signals include noise that appears when the Hall 

sensor acquires the signals. In this experiment, a transverse defect is selected as the MFL testing object. We artificially 
carved a transverse defect in the sucker rod; the length is 2 mm, and the depth is 7.5 mm. To testify the validity of the 
three methods presented in this paper, taking the measured signals after denoising as the input measurement data, as 
depicted in Figure 6. It is assumed that the variances of process noise and measurement noise are equal to 15, so the 
reconstruction results can be achieved using the three reconstruction approaches, as shown in Figure 7.

Figure 6. Tangential component of the experimental MFL signal.
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Figure 7. Reconstruction result of defect depth from the experimental MFL signals.

The reconstruction results indicate that the three reconstruction methods can achieve the defect reconstruction 
from the experimental MFL signals, but the reconstruction performances are vastly different. In Fig.7 (b), the result 
of the PF is obviously higher than that of the other methods. Figure 8 presents the changing trends of the evaluation 
indexes RMSE and SNR under different variances of process noise and measurement noise. It can be seen that RMSE 
increases with the increase of variances, and SNR decreases with the increase of variances. The changing trends 
demonstrate that the reconstruction performance of PF is optimal with good stability.

Figure 9 depicts the calculation time of the three methods under different variances of process noise and 
measurement noise. It can be noticed that the PF approach has the longest computation time, which is still within an 
acceptable range, and EKF method requires the least time.

Figure 8. Changes of RMSE and SNR with different variances.
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Figure 9. Calculation time of the three methods.

From the above reconstruction results, it is clearly true that the reconstruction performance of PF is better than that 
of EKF and UKF, and it has good robustness and stability; however, PF method has the longest computation time. In 
order to further discuss the reconstruction effect of PF, the reconstruction result from the experimental MFL signals is 
analyzed when the variances of process noise and measurement noise are up to 50, and the result is shown in Figure 
10. From Figure 10, the reconstruction of defect depth from the detected MFL signals indicates that the PF approach 
is capable of producing reasonably accurate results, even in the presence of larger noise. From both simulation and 
experimental results, this work concludes that the PF approach has better performance than the EKF and UKF.

Figure 10. Reconstruction performance using PF method.

CONCLUSION
This paper applies three approaches, EKF, UKE, and PF, to achieve the 2D defect profile reconstruction from 

MFL signals. The defect depth reconstruction is carried out from two aspects of simulation data and experimental 
data, and the reconstruction performances of the three methods are compared through the evaluation indexes, i.e., 
RMSE and SNR. The results indicate that the RMSE increases and SNR decreases as the variances of the process and 
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measurement noises increase, and the three methods introduced in this paper can be achieved in reconstructing the 
defect profile. Meanwhile, the reconstruction effect of PF is superior to that of EKF and UKF due to the good accuracy 
and robustness, and PF is a more effective and feasible approach to solve the inverse problems.
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