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ABSTRACT

This paper presents a new approach, tilt integral derivative (TID) control, to stabilize 
frequency variations under load changes in automatic generation control (AGC). 
The TID control is applied to AGC because of its better response and higher degree 
of freedom in choosing the control parameters. It has superior qualities such as 
simple parameter tuning and better disturbance rejection ratio. In addition, it shows 
insignificant effect of parameter variation on the desired response. To examine these 
attributes, a two-area thermal system consisting of non-reheat turbine is considered 
for study. Further, sensitivity analysis has been carried out to explore the robustness 
of the TID controller. The controller gains are obtained by solving a constrained non-
linear optimization using an integral time absolute error (ITAE) index. A comparative 
analysis between integral control, PID control, fractional order PID (FOPID) control 
and TID control reveals that TID controller can deliver better performance for AGC.

Keywords: Automatic generation control; constrained non-linear optimization; 
integral control; PID control; FOPID control; TID control.

INTRODUCTION

In an interconnected power system, an adequate amount of power generation is 
required to meet the fluctuating load demand characteristics. There is a constant 
need to generate enough power that is delivered to the load so that a balance between 
generation and load is maintained. It is difficult to maintain a balance between 
generation and load, due to the occurrence of transient disturbances in the power 
system. These disturbances cause voltage and frequency instabilities, affecting the 
smooth operation of the system. There are two control loop mechanism, automatic 
voltage regulator (AVR) and automatic generation control (AGC), to deal with the 
voltage and frequency instability respectively. Frequency instability is considered to be 
an important issue in an interconnected power system and it is vital to keep the system 
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frequency under permissible limits. This action is called load frequency control (LFC) 
or automatic generation control (AGC) (Kundur, 1994). Therefore, the role of AGC is 
significant during normal working conditions and in transient disturbances. 

AGC has been extensively examined by researchers in the past and still holds a 
great deal of interest in researchers. The issues of load frequency control were first 
addressed by Concordia & Kirchmayer, (1953) and Cohn (1957). Since then, many 
control strategies have been introduced to address the load frequency control problem 
controllers. The main purpose of all control strategies proposed for LFC was to reduce 
the steady state errors and to pull the system from the state of instability to normal 
operating conditions. Classical control (Concordia &, Kirchmayer, 1953) is commonly 
applied in LFC problem; however, due to increased complexities and non-linearities 
classical control techniques are not providing desired performance (Van Ness, 1963; 
Cohn, 1967). As a result, modern control approach based on system identification was 
introduced to design an optimal control system, (Fosh & Elgerd, 1970; Pan & Liaw, 
1989). But, the approach requires identification of model parameters, making the 
designing process difficult due to increase in computational complexity (Zribi et al. 
2005). The conditions of various complexities such as extensive computations, multi-
variable and non-linearities require a flexible approach for evaluating the performance 
of system. Therefore, Intelligence control scheme such as ANNs, fuzzy logic, GAs has 
been introduced for AGC (Cam & Kocaarslan, 2005; Kocaarslan & Cam, 2005). In 
conclusion, different control strategies have been applied in LFC problem, and there 
is still much scope to explore new methods and technique for the same. 

Recently, fractional order control (FOC) has gained the attention of researchers 
working around LFC problem. Fractional order control is an application of fractional 
calculus (FC) to control theory. Fractional calculus is a notion based on ordinary 
integration and differentiation to non-integer order (Samko et al., 1987; Miller & 
Ross, 1993). FOC is a system described by fractional differential equations. Later, 
by applying Laplace transformation on the fractional differential equations, a transfer 
function of given system is obtained, for which a suitable fractional order controller can 
be designed (Manabe, 1960; Podlubny, 1994). There are four representative fractional 
order controllers (FOC) in the literature, namely, TID (Tilted Integral Derivative) 
controller, CRONE controller (Contrˆole Robuste d’Ordre Non Entier), PIλDμ 
controller and fractional lead-lag compensator (Xue & Chen., 2002). A generalization 
of the PID controller, namely the PIλDμ controller, involving an integrator of order λ 
and a differentiator of order μ has been proposed by Podlubny (1999). Author has also 
demonstrated better response of this type of controller, in comparison with the classical 
PID controller, when used for the control of fractional-order systems. A frequency 
domain approach by using fractional-order PID (FOPID or PIλDμ) controllers was also 
studied by Vinagre et al. (2000). In the LFC problem, the effect of fractional order PID 
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(FOPID) controller under a conventional environment with non-reheat turbine was 
first introduced by Alomoush (2010). The fractional order PID (FOPID) controller 
was then applied to an interconnected power system using imperialist competitive 
algorithm for parameter tuning (Taher et al., 2010). However, none of the fractional 
order controller other than FOPID has been proposed in the load frequency control 
problem.

In this paper, TID controller has been applied on the load frequency control problem 
of interconnected power system. The optimal value of TID controller parameters is 
obtained by minimizing the performance index, ITAE- Integral of time-weighted 
absolute error. Also, comparison between the dynamic response obtained from Integral 
controller, PID controller, FOPID controller and TID controller has been presented 
in this paper. The integral controller, PID controller and FOPID controller are taken 
as a benchmark for comparative analysis. For a uniform comparative analysis, all 
the controllers are optimized using same optimization technique i.e. interior point 
algorithm and their performance has been analyzed based on system response. As 
a result, by improving the system stability and response, the TID controller shows 
better performance than Integral controller, PID controller and FOPID controller in 
LFC problem.

SYSTEM INVESTIGATED

The transfer function model of two-area non-reheat thermal system is shown in 
Figure 1. Each area in the system model consists of transfer function of governor, 
turbine (non-reheat) and combined inertia of rotating mass plus load of that area. The 
interconnecting weak link between the two-area is called tie line. Each control area in 
the system, monitors the system frequency and tie line deviation and tries to restore 
the normal operating state of the system.

Fig. 1. Block diagram model of a two-area non-reheat thermal system
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The deviation between desired and actual system frequency combined with the 
deviation from the scheduled net interchange in a control area is called area control 
error (ACE) given by,

                                        
(1)

Where ACEi is area control error of ith area also acting as an input to the respective 
controllers of ith area, ∆Ptie,i,j is tie-line power flow error between ith and jth area, ∆fi 
is frequency error of ith area, Bi is frequency bias coefficient of ith area, which is given 
by,

                                                     
(2)

Here, Di is damping co-efficient of ith area and 1/Ri is the droop characteristics of 
ith area. The two-area system may be represented in transfer function form as:

For Area-1

 
                         

(3)

                                             (4)

For Area-2

                        (5)

                                           (6)

For Tie-line

                                    
(7)

Where, machine plus load dynamics are shown by transfer function 

, Governor dynamics by , Turbine dynamics by 

. The transfer function of tie line power deviation response is given 

by  and T12 is the synchronizing co-efficient of tie-line connecting the ith and 

jth area. The transfer function of Integral controller is , PID controller is 

. 
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For FOPID controller transfer function is given by,

                                         
(8)

And for TID controller transfer function is given by,

 

                                         

(9)

Here i = 1, 2, 3...are the number of control areas in a power system. For two 
area system, control area-1 is represented by subscript i = 1 and control area-2 is 
represented by subscript i = 2 as shown in Figure.1.

CONTROLLER METHODOLOGY

TID controller

The TID control is a closed loop tunable compensator having three control parameters 
(KT, KI, KD) and a tuning parameter (n). The structure of TID is similar to PID, 
except the proportional behavior is replaced by a tilted proportional behavior having 
transfer function  or . The tilted behavior provides a feedback gain as a 
function of frequency which is tilted with respect to the gain/frequency of conventional 
compensator. So, the entire compensator is referred to as Tilt-Integral-Derivative 
(TID) compensator. A block diagram representation of the TID control is shown in 
Figure 2.

Fig. 2. Structure of TID controller in a closed loop system

And mathematically may be expressed as:

                                      (10)

                                       (11)
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Where GTID(s,θ) is the transfer function of the TID controller in complex variable 
s ∈ C    and parameterized by θ ∈ R4. The mathematical description of transfer function 
GTID(s,θ) is:

                                    (12)

Where      (13)

And θ ∈ R4, here θ is a vector of four control parameters KT, KI, KD and n where 
& 0n n∈ ≠ . The range of n is preferably between 2 and 3. 

TID control offers high degree of freedom in control parameters and likely to 
have superior properties like simpler tuning, higher rejection ratio, and smaller effects 
of plant parameter variations on closed loop response (Lurie, 1994). However, TID 
control has never been explored before in the area of automatic generation control 
other than FOPID controller.

Both TID control and FOPID control are types of fractional order control, emerged 
from fractional calculus applied to control theory. Therefore, sometimes TID controller 
is thought of being a special case of FOPID. However, TID controller is not a special 
case of FOPID controller because TID controller has significantly different structure 
than FOPID controller as shown in Equation (8) and Equation (9). According to Lurie 
(1994), the TID controller is similar to PID controller except the proportional behavior 
is replaced by a tilt behavior having transfer function , where n is a non-zero 
real number, preferably between 2 and 3. As it can been seen from Equation (8), the 
structure of TID controller the term n cannot be zero and for TID controller to be a 
special case of FOPID controller, the term 1/n must be zero, which is restricted by 
the inventor. Therefore, it can be concluded that TID control is not a special case of 
FOPID control.

PARAMETER OPTIMIZATION

Formulation of optimization problem

In this paper, the optimum value of controller parameters is obtained by minimizing 
the objective function formulated using performance indices. A suitable performance 
index examined here is the integral of time multiplied by the absolute error (ITAE) 
and is given as:

                                            
 (14)
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Where  is the error variable defined as the difference of set value  and 
actual value  in time domain. For two-area LFC model  may be expressed 
as:

                                 (15)

 
                    

(16)

Where  and  are the system frequency deviation of two-area LFC 
model and J is the objective function for two-area LFC system used for solving the 
optimization problem. An identical two-area system is considered for the study, which 
reflects identical controllers. Therefore the optimal values of TID controller constants 
(KT, KI, KD, n) are obtained by solving the optimization problem formulated by means 
of Equation (16) under the restriction of the range (θ) may be represented as:

                                                  (17)

Subject to ,

Equation (17) is a constrained non-linear optimization problem where  is a 
function of upper and lower bound with the optimization variables (KT, KI, KD, n) 
and x is given by,  where 
x ∈ R8. The subscripts min and max denotes minimum bound and maximum bound 
respectively. To change the problem into Lagrangian equivalent function, a slack 
variables v is added to Equation (17) and may be written as;

                                                  (18)

Subject to  

where v is a vector given by, 
 
∈ R8

 
such that 

  and  is a function of upper and lower bound with the optimization variables 
KT, KI, KD, and n which are to be tuned so for optimization problem become a 
variable.

Interior point algorithm

The constrained optimization problem in Equation (18) is solved using interior point 
algorithm. The advantage of using interior point algorithm over other algorithms is 
that it always satisfies bound constraints in all intermediate iterations. The algorithm 
attempts to find a constrained minimum of a scalar function of several variables 
starting at an initial estimate. The solution begins when a logarithmic barrier term α is 
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introduced in the objective function, which replaces the non-negativity constraints of 
Equation (18) resulting in a problem given by:

                                       
(19)

Subject to 

Here, k is the number of constraint equations given by,     
 

Now, to determine the unconstrained solution of Equation (19), the Lagrangian 
function is defined as:

                       
 (20)

Here y ∈ R4 is the Lagrange multiplier. The minimization problem (20) is not 
computationally attractive as it requires finding k variables. It is then wise to use 
a single Lagrangian multiplier which reduces the computation cost significantly. 
However,   is a vector equality constraint therefore; if the objective function J is 
a strictly positive function such that ( ) : NJ +→i  (ITAE is strictly positive), then 

 must be replaced with a function ( ( ) : )kf →i  for a single Lagrangian 
multiplier problem such that  changes to  which is well defined 
when using single Lagrangian multiplier. Equation (20) is the required unconstrained 
function to optimally evaluate the parameters of respective controllers with respect 
to first order optimality conditions. Several algorithms have been presented for the 
numerical solution of optimality conditions see as (Byrd et al., 1999; Waltz et al., 
2006).

RESULT AND ANALYSIS

The AGC model under study is an identical two-area system (area-1: 2000MW and 
area-2: 2000MW). The system comprises of two thermal units and is subjected to step 
load disturbance (SLD) of 0.01 pu. The nominal value of system parameters are taken 
from Elgerd (1983) and are presented in Appendix. Two cases have been considered 
to study the previously mentioned properties of TID controller, (i) At normal operating 
condition, (ii) Effect of parameter variations. Simulation results are obtained using 
MATLAB. 

At normal operating condition

When area-1 is subjected to ∆Pd1 = 0.01pu under a load equivalent to 50% of system 
rating, the frequency deviation in area-1 (∆f1), frequency deviation in area-2 (∆f2) and 
tie line power deviation (∆PTie) are shown in Figure 3(a), Figure 3(b) and Figure 3(c) 
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respectively. The optimal value of the controller parameters are: Integral gain KIN = 
0.497. PID gains; KP = 1.042, KI = 2.150, KD = 0.386. FOPID gains; KPF = 1.499, 
KIF = 2.151, KDF = 1.370, λ = 0.99, μ = 1.03. TID gains; KT = 31.745, KI = 49.702, 
KD = 4.652, n = 2.987.

Fig. 3(a). Frequency deviation response in area-1 at ∆Pd1 = 0.01pu 

Fig. 3(b). Frequency deviation response in area-2 at ∆Pd1 = 0.01pu.
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Fig. 3(c). Tie line power deviation response at ∆Pd1 = 0.01pu.

Effect of parameter variations

To study the robustness property of the proposed TID controller, all the system 
parameters are subjected to ±15% change from its nominal value and system response 
is obtained using the same value of controller parameter, as used for normal operating 
conditions. For this study, the response of TID and FOPID controller has been taken into 
consideration, as it can be seen in previous section (normal operating conditions) that 
TID and FOPID controller excels integral and PID controller in terms of performance. 
So, the frequency deviation in area-1 (∆f1), frequency deviation in area-2 (∆f2) and tie 
line power deviation (∆PTie), due to ±15% change in system parameters are shown in 
Figure 4(a), Figure 4(b) and Figure 4(c) respectively.

Fig. 4(a). Frequency deviation response in area-1 due to ±15% change in all system parameters.



40Application of tilt integral derivative control on two-area power system

Fig. 4(b). Frequency deviation response in area-2 due to ±15% change in all system parameters.

Fig. 4(c). Tie line power deviation response due to ±15% change in all system parameters.

For the two cases discussed, the value of objective function i.e. ITAE is given in 
Table 1. The settling time (ST) (in seconds) and overshoot (OS) (in per unit) based on 
2% of steady state error (ess) is shown in Table 2. As settling time is within the range 
of 2% of ess , the result is obtained as zero for controllers except Integral controller. 
However, the result of overshoot shows that TID controller is more robust.
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Table 1 Value of ITAE at different operating conditions with respect to different controllers

Integral PID FOPID TID

Nominal operating condition 0.1647 0.0122 0.0241 0.0011
15% increase in system parameters from 
nominal value 0.5852 0.0319 0.0518 0.0016

15% decrease in system parameters from 
nominal value 0.0794 0.0104 0.0311 8.39×10-4

Table 2 Overshoot (in pu) in ∆f1, ∆f2 and ∆PTie with respect to different controllers

Operating 
Conditions

Controllers

Integral PID FOPID TID

ST OS ST OS ST OS ST OS

Nominal 
operating 
condition

∆f1 8.89 0.021 0 0.011 0 0.006 0 0.003

∆f2 0 0.017 0 0.006 0 0.003 0 6.1×10-4

∆PTie 0 0.006 0 0.002 0 0.001 0 1.9×10-4

15% increase 
in all system 
parameters

∆f1 17.26 0.026 0 0.014 0 0.008 0 0.004

∆f2 17.30 0.025 0 0.011 0 0.004 0 0.001

∆PTie 0 0.007 0 0.003 0 0.001 0 3.4×10-4

15% decrease 
in all system 
parameters

∆f1 0 0.017 0 0.008 0 0.004 0 0.002

∆f2 0 0.010 0 0.003 0 0.002 0 2.4×10-4

∆PTie 0 0.004 0 0.001 0 9.8×10-4 0 9.90×10-5

CONCLUSIONS

In this paper, a tilt integral derivative controller has been applied to two-area non-reheat 
interconnected thermal system. The objective was to introduce TID controller as a load 
frequency controller for AGC models and to study the possible improvements that 
can be achieved using the TID controller. The superiority of TID control is analyzed 
when system undergoes step load disturbance of 0.01pu and all system parameters 
are subjected to variations of ±15% from their nominal value. The simulation results 
obtained from the study provides a comparative analysis between Integral controller, 
PID controller, FOPID controller and TID controller. It is evident from the results that 
TID controller is robust in nature and shows better performance than PID and FOPID 
controller. Therefore, it can be concluded that, TID control shows property of robust 
control structure and provides a better time response specifications under step load 
disturbance as well as under parameter variations.
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APPENDIX

System parameters: system frequency f = 60 Hz, Rated power of ith area (i = 
1,2,3…) Pri = 2000MW, Operating load Popi = 1000MW, Governor speed regulation 
in ith area (i = 1,2,3…) Ri = 2.4 Hz/pu MW, Frequency bias coefficient Bi = 0.425 
pu MW/Hz, Hi = 5s, Damping coefficient Di = 0.00833 pu MW/Hz, Load change in 
ith area (i = 1,2,3…) ΔPd1 = 0.01pu, ΔPd2 = 0, Synchronizing coefficient Tij = 0.866, 
Governor time constant Tgi = 0.08s, Turbine time constant Tti = 0.3 s, Tmi = 20s, Kmi 
= 120 Hz/pu MW, a12 = -1, Lower bound (LB) = 0 & Upper bound (UB) = 50 (for 
KIN, KP,KI,KD,KPF,KIF,KDF,KT,KI,KD), LB = 0 & UB = 2 (for λ, μ), LB = 2 & UB = 
3 (for n)
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