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ABSTRACT
In this study, ship steel/stainless steel plates were produced by joining ship steel with stainless steel using explosive 

welding process. The characterization of the joining interface of the plates was carried out by optical microscopic 
examination. Charpy impact tests were conducted at different temperatures to determine the impact toughness of 
the ship steel/stainless steel plates and the effect of the rolling on the impact toughness. In addition, after the Charpy 
impact test, the fractured surfaces of the specimens were investigated via scanning electron microscopy (SEM). Using 
the data obtained as a result of the impact toughness tests, an artificial neural network (ANN) model was improved 
for the prediction of the impact toughness. Five different material types, two different rolling directions, and eight 
different temperatures were used as the input parameters of the Charpy impact tests. The impact toughness values 
obtained at the end of the tests were used as the output parameters of the generated prediction model. The high R2 
value obtained in the developed prediction model demonstrated that it could be successfully used for predicting impact 
toughness.  

Keywords: ANN; explosive welding/cladding; impact toughness; ship steel plate; stainless steel.

INTRODUCTION
Today’s ship and offshore construction designers face complex problems in selecting materials that provide 

minimization of topside weight and protection against marine corrosion-all within a reasonable budget (Kaya & 
Kahraman, 2013). With the development of modern industry, applications of single metallic constituents are unable 
to meet these requirements. Instead, with the respective merits of two metallic components, the cladded plate can 
achieve the performance that single metal constituents fail to provide. The usual solution to this problem is to employ 
a variety of metals throughout the structure, each being selected for features appropriate for the specific component 
(Kaya, 2018). 

A cladded plate is a ship steel/stainless steel plate obtained by joining stainless steel (cladding metal), etc., to a 
carbon or low alloy steel (base metal). The most important advantage is that not only is it less costly than similar steels 
that are made entirely of cladding materials, but it also provides other features including good mechanical strength and 
good resistance to heat and corrosion. The explosive welding is utilized for many industrial processing applications, 
including those for refineries and chemical plants as well as in the ship-building industry. In the shipbuilding and 
marine industries, cladded plates are one of the oldest applications for explosive welding (Kaya et al., 2017).

The explosive welding is becoming an increasingly popular process of joining, as it provides many advantages 
such as high joint strength and the ability to join unweldable metals or those difficult to weld by other processes. 
Additionally, when combining materials characterized by large surfaces or materials of different thicknesses, the 
explosive welding enables their properties to be preserved after joining (Fronczek et al., 2016). 
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New industrial application design requires the investigation of innovative construction materials, including 
multilayer materials such as bimetals. The explosive welding is one of the most widely employed processes for 
bimetal surface modification. This process offers the possibility of combining the properties of two or more metals or 
alloys (Nieslony et al., 2016). The explosive welding method has been successfully shown for varied similar steel/steel 
plate (Acarer et al., 2003) and Al/Al plate (Gülenç et al., 2016) and dissimilar aluminium/steel plate (Findik, 2011, 
Corigliano et al., 2018; Corigliano et al., 2018; Kaya, 2018), titanium/steel plate (Xie et al., 2018), and inconel 625/
Ti6Al4V plate (Topolski et al., 2016) materials. 

Using mathematical models in experimental studies provides savings in both time and cost. Experimental studies 
can be modeled using many mathematical and experimental design processes (Benyounis & Olabi 2008). Previous 
studies have demonstrated the successful modeling of arc welding using artificial neural networks (ANNs) (Nagesh & 
Datta, 2002; Chan et al., 1999; Mirapeix et al., 2007). Moreover, other studies in the literature have used ANNs and 
other prediction models successfully to model the laser welding process (Casalino & Minutolo, 2004; Luo et al., 2005; 
Olabi et al., 2006), while a number of studies have obtained positive results using ANNs for other welding processes 
(Martin et al., 2007; Dutta & Prahitar, 2007; Shojaeefard et al., 2013). 

Recently, a research has been carried out on the fatigue life (Prazmowski et al., 2017), numerical simulation (Chu 
et al., 2017), and physical/experimental modeling (Wang et al., 2016) of explosive-cladded plates. Reinforcement of 
these bimetallic composites with wire (Gülenç et al., 2016), their production from shape-memory alloys (Belyaev et 
al., 2016), and multilayer material production (Lazurenko et al., 2016) has also been studied. Much research has been 
carried out on the production and on the investigation of various aspects of explosive-cladded plates. However, the 
influences of distance from the explosion zone on the joining interface microstructure of these cladded plates have 
not been dealt with in those studies. Neither has any work been seen to deal with the impact transition temperature 
of these cladded plates nor to deal with the influence of the rolling direction of the base material on the impact 
transition temperature. In addition, no study found in the literature to date has employed ANNs to model the explosive 
welding. 

Compared to the ship steels, the stainless steels provide much better mechanical and corrosion properties in sea 
water. Using entirely the stainless steel significantly increases the cost of shipbuilding. Instead, using the stainless 
steel on the surfaces exposed to corrosive effects (i.e., the outer surfaces) and normal shipbuilding steel on the less 
exposed surfaces may significantly decrease the cost. The aim of this study was to produce the ship steel/stainless 
steel plates for use in the offshore and shipbuilding industries by employing the explosive welding process to clad the 
ship steel plate widely used in shipbuilding with different types of the stainless steel (ferritic, austenitic, martensitic, 
and duplex). Based on the distance from the explosion zone, the effect of the rolling direction on the impact toughness 
of the resulting the ship steel/stainless steel plates was examined via microstructure studies. In addition, an ANN 
model was developed to evaluate the effect of the material type, the rolling direction, and temperature on the impact 
toughness.

MATERIAL AND METHODS

Material Production
For the ship steel/stainless steel plates production, the ship steel plates in dimensions of 500×250×10 mm were 

used as the base material and ferritic (AISI 430), austenitic (AISI 316L), martensitic (AISI 420), and duplex (AISI 
2304). The stainless steel plates in dimensions of 500×250×1 mm were used as the cladding materials (flyer plate). 
The chemical compositions of the materials used in the ship steel/stainless steel plates are given in Table 1.
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Table 1. Chemical compositions of the base and cladding materials (by weight %).

 C Mn P S Si Al Cu Cr Ni Mo Fe

 Ship steel 0.149 0.70 0.015 0.012 0.166 0.028 0.049 0.022 0.052 0.002 Balance

 AISI 430 0.039 0.340 0.029 0.002 0.39 - - 16.07 0.15 - Balance

 AISI 316L 0.008 1.75 0.045 0.003 0.95 - - 17.8 12 2.7 Balance

 AISI 420 0.20 0.70 0.002 0.003 0.20 0.006 0.13 12.7 0.15 - Balance

 AISI 2304 0.02 0.10 - - - - - 23 4.8 0.3 Balance

The production of the ship steel/stainless steel plates using the explosive welding/cladding process was carried 
out using the parallel setup shown in Figure 1. Preliminary tests were conducted to determine the optimum welding 
parameters, which are given in Table 2. 92% ammonium nitrate, 5% diesel fuel, and min 3% TNT (Elbar-5) powder 
produced by Mechanical and Chemical Industry Company (MKE, Turkey) were used as the explosive in the welding 
processes. The specimens joined via the explosion could cool in the open air after the procedure. 

 

Fig. 1.  Parallel arrangement of experimental setup for welding process.

Table 2. Welding parameters used in experimental studies.

Base Plate Flyer Plate Explosive 
Material 

Stand-off Distance
 ((s) mm)

Explosive 
Rate (R)

Explosive Amount (m 
× R) (g)

Ship steel

AISI430

Elbar-5 2 t 2.5 2.500
AISI316L

AISI420

AISI2304

Metallographic Examination
 The specimens were cut from the ship steel/stainless steel plates using the wire electric discharge machining 

(EDM) process for the microstructure examination and Charpy impact test. The microstructure specimens were 
classified according to their distance from the explosion zone (Zones 1-4) and the Charpy impact specimens were 
classified depending on the rolling direction (Fig. 2). 
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Fig. 2. Wire EDM-cut specimens.

The specimens for microstructure examinations were classified into four zones depending on the distance from the 
explosion zone and were cut, mounted in bakelite, and embedded in epoxy resin. Standard metallographic specimen 
preparation procedures (ground and polished) were then applied. The polished specimens were etched with 3% nitric 
acid-97% ethanol solution. Microstructure examinations were then performed using a Leica DM 4000M optical 
microscope. 

Charpy Impact Toughness Tests
The base material (the ship steel plate) and the ship steel/stainless steel plates (four different cladding) were prepared 

in accordance with the Charpy impact test specimen standard (ASTM E 23-98) schematically shown in Figure 3. The 
specimens were cut from the plates in directions parallel and perpendicular to the rolling direction. In order to see the 
effect of the four different types of the stainless steel claddings (flyer plate) on the impact toughness of the ship steel 
base material, only the ship steel surface was notched. Tests were performed at eight different temperatures (between 
-50 °C and 50 °C) to determine the impact transition temperature of the specimens. Three specimens were tested at 
each temperature and the results averaged. The Charpy impact test specimens were brought to the test temperature 
using a HUBER CC 805 cooler/heater with a capacity of -80°C/+150°C. Charpy impact tests were applied to the 
prepared specimens using a computer-controlled 450 J capacity ZWICK ROELL RKP 450 device. After the tests, 
the fracture surface images (-50 °C, -40 °C, and -30 °C) on the impact transition temperature of the ship steel and the 
ship steel/stainless steel plate specimens parallel to the rolling direction were examined with the ZEISS EVO LS10 
scanning electron microscope (SEM).

Fig. 3. Charpy impact test specimen.
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Artificial Neural Networks
Artificial neural networks (ANNs) are computer systems that are developed with the aim of automatically 

performing a function resembling that of the human brain in its ability to derive, create, and discover new information 
on its own through the process of learning. An ANN is a processor whose structure is composed of simple process cells 
distributed in an intense parallelism having the ability to store and use information. This processor is like the brain as 
it uses connections between neurons, known as synaptic weights, to store knowledge and information that is learned 
through training (Balasubramanian et al., 2010). 

In ANN models, the weight values necessary to increase the accuracy level of the outputs are firstly determined 
by using various transfer functions.  In the training of an ANN, the weights are determined using the data in hand 
to reveal the relation between the input variables and the predicted variables. Once the ANN training is completed, 
the ANN may run and predictions may be produced (Manikya Kanti & Srinivasa Rao, 2008). The performance of 
a network is measured by its defined signal and error criterion. The output of the network is compared with the 
desired output to obtain the error margin. This process is repeated several times and the network is trained. The 
purpose of the training process is to achieve optimal solutions based on performance measures. Figure 4 shows the 
structure of an ANN.

Fig. 4. Artificial neural network architecture (Palani & Natarajan, 2011).

An ANN is a parallel processor with the ability to collect information after a learning process and to store and 
generalize this information using connection weights between processing units. The process involves learning 
algorithms that enable the renewal of ANN weights to achieve the desired goal. It is defined as the generation of 
appropriate responses by ANN via generalization for entries that are not encountered in the training or learning 
process. With these superior features and as a result of the ability to solve complex problems, ANN applications are 
found in many engineering fields today (Mathew et al., 2017; Pouraliakbar et al., 2015; Palavar et al., 2015; Khorasani 
& Yazdi 2017; Almonacid et al., 2017).   

RESULTS AND DISCUSSION
 Metallographic Examination Results

Microstructure examinations were carried out to study the effect of the distance from the explosion zone on the 
structure of the joining interface of the ship steel/stainless steel plate specimens joined by the explosive welding. 
Images of the joining interface of the ship steel/stainless steel plates produced are shown in Figure 5.
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Fig. 5. The joining interface of the ship steel/stainless steel plates.

Figure 5 shows that the joining interface has a flat appearance in Zone 1, which was the nearest to the explosion 
zone. Moving away from the explosion zone (Zone 2), the waviness starts on the joining interface and the entire 
joining interface, excluding that of the ship steel/AISI 2304 plate, is wavy. Moving further away from the explosion 
zone (Zones 3 and 4), there is a noticeable increase in the length and amplitude of the waves on the joining interface. 
There was less waviness in the ship steel/AISI 2304 plate joining interfaces compared to those of the other plates, 
especially in Zones 2 and 3. Therefore, because the waviness in the joining interfaces varied depending on the amount 
of deformation, it was observed that the AISI 2304 was more rigid than the other cladding materials (AISI 430, AISI 
316L, and AISI 420). In the literature (Kaya, 2014), it is reported that, in the explosive welding process, the wavy 
structure on the joining interface is related to the deformation and the waviness on the joining interface increases as 
the deformation amount increases. Moreover, they studied (Akbari Mousavi & Al-Hassani, 2005) the microstructures 
formed on the joining interface in the explosive welding process and observed that various structures (morphologies) 
on the joining interface (i.e., shear deformation and plastic strain) depended on the collision speed along the joining 
interfaces of the plates. At the same time, they reported that more shear deformation caused greater variation in 
the morphology of the joining interface. In other words, with low shear deformation, the joining interface was flat, 
while increasing shear deformation caused a wavy structure and with further shear deformation swirling waves were 
observed.

When the microstructure images of the joining interface of the ship steel/stainless steel plates were generally 
evaluated, the distance from the explosion zone, the waviness on the joining interface, and, accordingly, the length 
and amplitude of the waves were seen to increase. It was also determined that the amount of deformation increased 
as the distance from the explosion zone increased. In the literature, microstructure studies based on the distance from 
the explosion zone are extremely limited. They produced (Kaya et al., 2017) ship steel/AISI 2304 plate material 
via the explosive welding process and examined the effects of the distance from the explosion zone. They reported 
similar microstructure study results. Earlier studies (Miao et al., 2014; Durgutlu et al., 2005; Kahraman et al., 2005; 
Manikandan et al., 2006) have also found that collision speed and, consequently, collision pressure on the plates 
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increased due to the energy of the explosion on the joining interface of cladded plates produced via the explosive 
welding using different explosive ratios. These studies also found that deformation increased with the increase of this 
pressure and the waviness increased in parallel with it.  In addition, the effects shown by moving further from the 
explosion zone were like those shown by increasing the explosive ratio. 

Charpy Impact Toughness Results
The Charpy impact test results of the ship steel plate and the ship steel/stainless steel plates at different temperatures 

in parallel to the rolling direction are shown in Figure 6 and perpendicular to the rolling direction in Figure 7.

Fig. 6. Charpy impact test results of the ship steel/stainless steel plates in parallel to the rolling direction.

Fig. 7. Charpy impact test results of the ship steel/stainless steel plates perpendicular to the rolling direction.

When the Charpy impact test results of the specimens in parallel with and perpendicular to the rolling direction are 
examined, it can be seen that the lowest impact toughness was obtained from the ship steel/AISI 420 plate materials 
perpendicular to the rolling direction below -50 °C with 20.3 J, while the highest impact toughness was obtained from 
the ship steel base material in parallel to the rolling direction under 50 °C with 215.4 J. Furthermore, at all temperatures, 
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the specimens parallel to the rolling direction had higher impact toughness than the specimens perpendicular to the 
rolling direction. It has been reported in the literature (Kaya, 2014) that as plates were rolled, particles got longer in the 
direction of the rolling and, accordingly, V-Charpy specimens taken longitudinally (parallel to the rolling direction) 
exhibited higher impact toughness values compared to specimens taken horizontally (perpendicular to the rolling 
direction).

When Figures 6 and 7 are assessed together, it can be clearly seen that the impact toughness increased as the 
temperature increased in all specimens (the ship steel and the ship steel/stainless steel plates). In addition, the 
specimens parallel to the rolling direction showed impact transition temperatures between -40 °C and -50 °C, while 
those perpendicular to the rolling direction showed impact transition temperatures between -10 °C and -20 °C.  There 
was almost no difference at low temperatures, although the difference in the impact toughness between specimens 
parallel and perpendicular to the rolling direction at high temperatures was high. They reported (Kaya et al., 2017) 
that, as a result of Charpy impact tests, specimens parallel to the rolling direction exhibited higher values of impact 
toughness than specimens perpendicular to the rolling direction and at the same time, specimens parallel to the rolling 
direction exhibited higher impact transition temperature values than perpendicular specimens. They also reported that 
the difference in toughness between different the rolling directions at high temperatures was high and the difference 
was low at low temperatures. They also reported that the ship steel/AISI 2304 plates exhibited lower impact toughness 
values compared to the ship steel due to the high deformation during the explosive welding.

As an example, Figure 8 shows images of the ship steel/AISI 430 plate specimens parallel and perpendicular to the 
rolling direction after the Charpy impact test at all test temperatures.

Fig. 8. The ship steel/AISI 430 plate specimens after Charpy impact test.

Examination of the specimen images in Figure 8 shows that the specimens below the impact transition temperature 
(-40 °C for the ship steel and the ship steel/stainless steel plates parallel to the rolling direction and -10 °C for the ship 
steel and the ship steel/stainless steel plates perpendicular to the rolling direction) displayed a brittle fracture type and 
the fracture is flat without plastic deformation. It can also be observed that the fracture surfaces had a fine-grained 
and shiny appearance. The specimens exceeding the impact transition temperature showed a ductile fracture type, 
having first undergone a plastic shape change before fracturing. In addition, the fractures were in the form of tears with 
surfaces exhibiting a fibrous appearance. The literature reports (Kaya et al., 2017) that the explosive welding process 
was used to produce ship steel/AISI 2304 plate materials to produce ship steel/AISI 316L plate (Kaya & Kahraman, 
2013), to produce P355GH/AISI 316L plate (Kaçar & Acarer, 2004), and to produce P355GH/AISI 2205 plate (Kaçar  
& Acarer, 2003). They all reported similar results following Charpy impact tests at different temperatures.

Fracture Surface SEM Studies
The fracture surfaces of the ship steel and the ship steel/stainless steel plates parallel to the rolling direction 

and exceeding impact transition temperatures (-50 °C, -40 °C, and -30 °C) were examined by SEM. Images of the 
fractured surfaces are shown in Figure 9.
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The fractured surface SEM images show that the specimens parallel to the rolling direction at -50 ºC were flat 
and cut through the grain. In addition, these fracture surfaces appeared to be brittle, reflecting light and having a 
shiny appearance. The specimens parallel to the rolling direction at -40 ºC and -30 ºC had a tear-like surface image, 
including microspaces joined due to plastic deformation, with protrusions and fibrous appearance. They produced 
(Kaçar & Acarer, 2004) P355GH/AISI 316L plates using the explosive welding. Charpy impact tests at different 
temperatures were applied, and SEM studies were performed on the fractured surfaces after the Charpy impact test. 
They reported that a predominant ductile fracture surface was obtained at 25 °C characterized by a growth of micro 
voids and intramolecular fractures, while cracking and a fracture-like appearance through the grain were obtained at 
-50 °C. 

Fig. 9. SEM images of fractured surfaces of the ship steel/stainless steel plates.
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In addition, using the explosive welding process, they produced the ship steel/AISI 2304 (Kaya et al., 2017) and 
P355GH/AISI 2205 (Kaçar & Acarer 2003) plates. They applied Charpy impact tests at different temperatures and 
then performed SEM studies on the surfaces of the fractured specimens and reported similar results above and below 
the impact transition temperature.  

ANN Application
Artificial neural networks are an estimation model that is created by using the data contained in the experimental 

set. The learning of the ANN model is performed by using the values in the experiment set. After learning is performed, 
the model is tested. The more the inputs used in learning the model, the more successful the model. The purpose of 
testing the model is to evaluate the predictability of the model. When testing the ANN model, experimental parameters 
that are not used in learning the model are used. Prediction and evaluation results are compared to determine whether 
the model is successful. Experimental results can be estimated without the need for an experimental set using the ANN 
model, which has been successfully created. This saves time and costs for experimental work. Using the ANN model, 
which is obtained with high estimation results, it is provided to estimate the impact toughness results for the material 
under the desired properties and conditions. The fact that the model can only work in the range of data used in learning 
causes the system to work in a limited way.

In this study, the Levenberg-Marquardt (LM) algorithm based on a backpropagation multilayered ANN model 
was used due to its widespread usage and application in ANNs. The LM learning algorithm is a very successful 
optimization process and backpropagation learning technique based on the idea of multiple neighborhoods and the least 
squares approach. One of the most important advantages of the LM algorithm is its fast convergence. The prediction 
performance of the ANN model developed in this experimental study was established by applying the determination 
coefficient (R2), root of mean square error (RMSE), and mean absolute percentage error (MAPE) processes. Equations 
(1), (2), and (3) below were used in the calculations.

 
                                                                (1)

                                                  (2)

 

                                                                  (3)

Pythia software was used to develop the ANN model. Training was given by using the Fermi function as the Pythia 
software transfer function. The Fermi transfer function can be calculated by Equation (4), where VN represents the 
normalization value of the input, and wi represents the weight value and (I = 1,2,3 ..., n).

                                                                                      (4)

The training and testing experiments for the modeling of the impact strength results by the ANN were first 
determined. Subsequently, for each of the 80 experiments conducted according to temperature, material type, and 
the rolling direction, 68 pieces of experimental data to be used for training and 12 pieces for testing purposes were 
randomly separated. The most appropriate network structures and number of neurons were investigated by training 
the ANN with the experimental results. Firstly, a network structure having the lowest deviation value was chosen by 
automatic optimization of the program. After the network structure was determined, by changing the number of cycles 
and learning ratios of the program, it was trained to the lowest deviation value. For the experiments conducted as 
the result of these processes, a network structure consisting of four layers and 16 neurons was chosen. The network 
structure obtained is shown in Figure 10.  
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Fig. 10. Network structure.

The five different material types, which were the input parameters of the ANN, were classified from 1 to 5 and 
numerical responses to the material types were determined. The ship steel was designated as 1 and the others were 
numbered sequentially. Parallel to the rolling direction was designated as 1, and 2 was assigned for perpendicular to 
the rolling direction. Table 3 shows the 68 pieces of data used in training the network. 

Table 3. Experimental results and ANN learning outcomes.

Sq. Material type  Rolling
direction

 Temperature
(°C)

 Impact toughness (J)
(Experimental results)

 Impact toughness (J)
(ANN-predicted)

1 Ship steel Parallel -50 30.3 31.206
2 Ship steel Parallel -30 155.5 157.475
3 Ship steel Parallel -20 176.5 175.743
4 Ship steel Parallel -10 193.6 189.395
5 Ship steel Parallel 0 197.7 198.068
6 Ship steel Parallel 25 205.9 205.794
7 Ship steel Parallel 50 215.4 206.976
8 Ship steel Perpendicular -50 27.4 22.792
9 Ship steel Perpendicular -40 58.9 54.484
10 Ship steel Perpendicular -30 77 71.770
11 Ship steel Perpendicular -20 82.9 78.056
12 Ship steel Perpendicular 0 131.4 125.295
13 Ship steel Perpendicular 50 145.7 138.588
14 Ship steel/AISI 430 Parallel -50 27.3 25.976
15 Ship steel/AISI 430 Parallel -40 122.4 120.981
16 Ship steel/AISI 430 Parallel -20 160.5 163.431
17 Ship steel/AISI 430 Parallel -10 177.9 178.816
18 Ship steel/AISI 430 Parallel 0 187.7 190.082
19 Ship steel/AISI 430 Parallel 25 191.4 201.489
20 Ship steel/AISI 430 Parallel 50 202 203.670
21 Ship steel/AISI 430 Perpendicular -40 54.9 56.754
22 Ship steel/AISI 430 Perpendicular -30 71.9 71.794
23 Ship steel/AISI 430 Perpendicular -20 73.5 78.169
24 Ship steel/AISI 430 Perpendicular -10 106 110.286
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25 Ship steel/AISI 430 Perpendicular 0 120.9 124.273
26 Ship steel/AISI 430 Perpendicular 25 126.3 133.204
27 Ship steel/AISI 316L Parallel -50 29.2 25.592
28 Ship steel/AISI 316L Parallel -40 124.2 120.767
29 Ship steel/AISI 316L Parallel -30 149 144.356
30 Ship steel/AISI 316L Parallel -20 169 161.367
31 Ship steel/AISI 316L Parallel -10 182.6 176.571
32 Ship steel/AISI 316L Parallel 0 194.8 187.812
33 Ship steel/AISI 316L Parallel 50 207.6 202.015
34 Ship steel/AISI 316L Perpendicular -50 26.9 24.870
35 Ship steel/AISI 316L Perpendicular -40 58.1 58.460
36 Ship steel/AISI 316L Perpendicular -30 74.5 71.811
37 Ship steel/AISI 316L Perpendicular -20 81.3 78.242
38 Ship steel/AISI 316L Perpendicular -10 113.7 110.044
39 Ship steel/AISI 316L Perpendicular 0 125.9 123.333
40 Ship steel/AISI 316L Perpendicular 25 129.4 131.849
41 Ship steel/AISI 420 Parallel -50 22.8 26.267
42 Ship steel/AISI 420 Parallel -40 120.6 123.623
43 Ship steel/AISI 420 Parallel -30 141.5 146.448
44 Ship steel/AISI 420 Parallel -20 155.1 163.341
45 Ship steel/AISI 420 Parallel -10 172.1 178.005
46 Ship steel/AISI 420 Parallel 25 187.8 199.045
47 Ship steel/AISI 420 Parallel 50 199.5 201.401
48 Ship steel/AISI 420 Perpendicular -50 20.3 25.757
49 Ship steel/AISI 420 Perpendicular -40 53.8 59.225
50 Ship steel/AISI 420 Perpendicular -30 68.1 71.818
51 Ship steel/AISI 420 Perpendicular -20 70.7 78.423
52 Ship steel/AISI 420 Perpendicular 0 120.7 122.813
53 Ship steel/AISI 420 Perpendicular 25 123.8 130.939
54 Ship steel/AISI 420 Perpendicular 50 130.7 135.176
55 Ship steel/AISI 2304 Parallel -50 28.5 27.686
56 Ship steel/AISI 2304 Parallel -40 122.9 127.486
57 Ship steel/AISI 2304 Parallel -30 147.3 149.782
58 Ship steel/AISI 2304 Parallel -10 179.2 180.512
59 Ship steel/AISI 2304 Parallel 0 189.3 189.815
60 Ship steel/AISI 2304 Parallel 25 194.6 199.100
61 Ship steel/AISI 2304 Parallel 50 205.9 201.210
62 Ship steel/AISI 2304 Perpendicular -50 24.4 27.686
63 Ship steel/AISI 2304 Perpendicular -40 56.5 58.006
64 Ship steel/AISI 2304 Perpendicular -20 74.4 79.132
65 Ship steel/AISI 2304 Perpendicular -10 112.5 111.687
66 Ship steel/AISI 2304 Perpendicular 0 125.6 123.468
67 Ship steel/AISI 2304 Perpendicular 25 128.9 131.210
68 Ship steel/AISI 2304 Perpendicular 50 135.9 135.883
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In the training of an ANN, the process is slowed down by the application of a raw dataset. Thus, for more efficient 
and faster training, normalization preprocessing was applied to the data provided to the ANN. In this study, the data 
used in the ANN were normalized using the min-max process, which linearly normalizes the data. The minimum is 
the lowest possible data value, while the maximum is the highest possible data value. Equation (5) was used to reduce 
the data in Table 4 to values of between 0 and 1 using the min-max process. The weight values of the ANN are given 
in Tables 5, 6, 7, and 8, respectively.

                                                                                                (5)

In this equation,
VN = normalized data,
VR = input value,
Vmin = the smallest number within the input set,
Vmax = the largest number within the input set.

Table 4. Normalization values.
Vmin Vmax

Material type (VMT) 1 5

Rolling direction (VRD) 1 2

Temperature (oC) (VT) -50 50

Impact toughness (J) (VIT) 20.3 215.4

Table 5. Weights of neurons in Level-1.
N1 N2 N3 N4

W1 0.0506250 0.2191430 0.1748540 -1.0362710
W2 1.0109940 0.5882470 0.2676310 2.3628070
W3 -3.3954180 -0.4252060 1.4197170 -0.1938420

Table 6. Weights of neurons in Level-2.
N5 N6 N7 N8

W1 3.5515710 -1.0981070 -1.4290500 -0.7202270
W2 0.4571720 -0.0847450 0.6644960 0.2412670
W3 -1.4280560 -0.7568220 -0.0040730 0.6043190
W4 0.8750400 0.4520700 1.0166050 2.2039020

 Table 7. Weights of neurons in Level-3.
N9 N10 N11

W1 -1.3203310 -0.3198730 2.2103570

W2 0.4644580 -0.5137680 -0.4650200

W3 -1.0242260 0.3772490 -2.3448160

W4 1.1273880 -0.8481280 -1.4287730
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Table 8. Weights of neurons in Level-4 and output.
N12 N13 N14 N15 Output

W1 -1.0730750 0.3549820 -1.5653750 0.5261540 -0.594484

W2 0.6896290 -0.6594090 -0.2935870 1.2950210 1.489708

W3 0.9386280 -0.7053140 1.1983560 -1.4338800 -1.447591

W4 2.547669

The performance of the ANN was evaluated by using the R2, the RMSE, and the MAPE specified in Equations (1), 
(2), and (3). High R2 and low RMSE values indicated that the prediction model was successful. 

The ANN created was constructed using sixteen neurons, feedforward, and the backpropagation algorithm. The 
model was formulated using the widely applied Fermi transfer function in ANN training (Eq. 4). At the end of the 
calculations, the net output value was calculated using Equation (6).

Vann= fi (Vmax-Vmin)+Vmin
                             (6)

where fi (i = 1,2,3 ..., n), Vmax is the maximum output value of the experimental data, and Vmin is the minimum 
output value.

Once the learning part of the network was successfully completed, the network performance was tested using 
the experimental data not used in the learning. The output of the fifteen-neuron network structure generated for 
the prediction of impact toughness is given in Equations (7-11). These equations were used to calculate the impact 
toughness value by using material type, the rolling direction, and temperature input values. 

                                                              (7)

                                                         (8)

 
                                                       (9)

                                                              (10)

                                      (11)

A comparison of the data obtained in the experimental studies and the impact toughness prediction values obtained 
by using the ANN prediction model is given in Figure 11. The ANN and the experimental results were very close to 
each other. Table 9 gives the R2, RMSE, and MAPE results of the ANN learning prediction results. The ANN learning 
model R2 value was 0.9941, the RMSE value was 4.4920, and the MAPE value was 4.2965. The high R2 value and the 
low RMSE and MAPE values obtained indicated that the learning of the prediction model was successful.

Table 9. Statistical data of ANN model learning established for impact toughness prediction.

R2 RMSE MAPE

∆ IT 0.9941 4.4920 4.2965
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Fig. 11. Comparison of experimental results and ANN learning prediction results.

ANN Testing Results
The 68 experimental pieces of data shown in Table 3 were used for the learning of the network. The 12 randomly 

selected pieces of data given in Table 10 (which were not used for the learning of the network) were used in the testing 
of the network. 

As shown in Figure 12, the experimental results and the ANN test results were close to each other. The values 
of the ANN test prediction model were 0.9954, 3.1458, and 2.7796 for R2, RMSE, and MAPE, respectively. The 
statistical results shown in Table 11 show that the established ANN model can be used successfully for prediction of 
impact toughness. 

Table 10. Experimental results and ANN test outcomes.

Sq. Material type  Rolling
direction

 Temperature
(°C)

 Impact toughness (J)
(Experimental results)

 Impact toughness (J)
(ANN-predicted)

1 Ship steel Parallel -40 130.6 129.739

2 Ship steel Perpendicular -10 115.4 110.468

3 Ship steel Perpendicular 25 140.5 134.692

4 Ship steel/AISI 430 Parallel -30 145.9 145.853

5 Ship steel/AISI 430 Perpendicular -50 21.3 23.761

6 Ship steel/AISI 430 Perpendicular 50 133.5 137.192

7 Ship steel/AISI 316L Parallel 25 196.4 199.531

8 Ship steel/AISI 316L Perpendicular 50 136.1 135.927

9 Ship steel/AISI 420 Parallel 0 185.9 188.399

10 Ship steel/AISI 420 Perpendicular -10 105.7 110.182

11 Ship steel/AISI 2304 Parallel -20 165 166.635

12 Ship steel/AISI 2304 Perpendicular -30 73 71.804
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Table 11. Test statistical data of ANN model established for impact toughness prediction.

R2 RMSE MAPE

∆ IT 0.9954 3.1458 2.7796

The created ANN was able to calculate impact toughness values for different material types, different rolling 
directions, and different temperatures. A total of 80 experimental pieces of data were used, including 68 for training 
the ANN and 12 for testing the network. In order to evaluate the performance of the generated ANN, the values of the 
R2, the RMSE, and the MAPE were calculated. The high R2 and low RMSE and MAPE values indicated that the ANN 
model generated could be used successfully in predicting impact toughness for different materials, different rolling 
directions, and different temperatures. 

Fig. 12. Comparison of experimental results and ANN test prediction results.

CONCLUSIONS
In this study, microstructure, impact toughness, and fractured surface SEM studies were carried out on the ship 

steel/stainless steel plates produced through the explosive welding process. In addition, an ANN model was generated 
for the prediction of the impact toughness of these plates. The subsequent conclusions can be drawn from this present 
study:

In the optical microscopic studies of the joining interface of the ship steel/stainless steel plate specimens, a flat  �
joining interface was obtained near the explosion zone, while the distance from the explosion zone increased, and 
the joining interface transformed into the wavy structure. Furthermore, as the distance from the explosion zone 
increased, the wavelength and amplitude increased with increasing amount of cold deformation.

As a result of the Charpy impact tests applied at different temperatures, specimens parallel to the rolling direction  �
exhibited higher impact toughness values compared to specimens perpendicular to the rolling direction. Furthermore, 
the impact transition temperatures of the specimens parallel to the rolling direction were lower compared to those 
of the specimens perpendicular to the rolling direction.

In the fractured surface SEM investigations, ductile fracture surfaces were seen at temperatures below the impact  �
transition temperature and brittle fracture surfaces were found at temperatures above the impact transition 
temperature.

The values obtained with the prediction model established by the ANN were very close to the experimental values.  �
Statistical results showed that the prediction model was successful.
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By using a prediction model in experimental work, less time would be spent, and costs reduced. The desired data  �
could be obtained without the need for an experimental environment. Moreover, the generated prediction model 
would provide a quick solution without the need to decide on experimental working conditions.
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