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ABSTRACT
A common target model in through-the-wall radar (TWRI) imaging literature obeys the point target (PT) assumption 

in which a target is hypothesized to occupy a single pixel. Unlike PTs, the received signal reflected from extended 
target (ET) is an integration of the scattered signals from various parts of the same target. For high resolution images, a 
generalized model is needed to encompass the ETs. In this paper, we suggest a different but realistic ET reconstruction 
approach based on agnostic block sparsity. The algorithm does not impose any assumption on the length, number, or the 
distribution of the blocks. Results based on MATLAB simulation and experimental data show the effectiveness of the 
proposed reconstruction approach. The applications of the suggested approach are found in civil, rescue, surveillance, 
and security enforcement sectors, where an accurate tracking of large targets behind walls is vital.

INTRODUCTION
The objective of through-the-wall radar imaging (TWRI) is to acquire highly resolved images of obscured areas 

using electromagnetic (EM) waves. TWRI is increasingly useful in determining building interiors, rescuing people 
in case of fire or earthquakes, and undergoing law enforcement (Amin, et al., 2013). This technology has witnessed 
a tremendous growth and attracted the attention of many researchers in the last few years (Alkhodary et al., 2018; 
Muqaibel et al., 2017; Muqaibel et al., 2017). 

TWRI signals can be generated by either transmitting an ultra-short pulse or a series of step-frequencies that cover 
a wide band. The former is known as the time-domain impulse radar, and the latter is the step-frequency continuous 
wave (SFCW) radar (Gurbuz et al., 2009; Huang et al., 2010; Muqaibel et al., 2017; Nicolaescu et al., 2003). 
Transmitting an ultra-short pulse requires extremely fast and complex A/D converters at the receiver. In contrast, 
SFCW measures only the amplitude and the phase of the received frequencies, which leads to a simple design of the 
receiver. In addition, SFCW has relatively high noise immunity, which is adopted in this work. 

Unlike in point targets (PTs), the received signal from extended target (ET) is an integration of the scattered 
signals from various parts of the same target (Alkhodary et al., 2017). Point target is presented as a single pixel in 
the radar image, while ET is represented by collection of adjacent pixels in the image. In most TWRI applications, 
targets are more likely to be ET; as such, a more generalized model is needed to encompass the ETs as the previous 
point-like assumption does not hold. This clustering of the target pixels can be exploited to enhance the reconstruction 
performance (Eldar et al., 2010; Masood et al., 2013b; Wu et al., 2015). 

The ET is described using two parameters: the target length and the target reflection coefficient (Gennarelli et al., 
2015; Yoon et al., 2008). In the literature, two types of reflection coefficients’ distributions have been considered: 
assuming constant value distribution across the entire target extent and the spatial-Gaussian distribution (Yoon et al., 
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2008). The constant value coefficient implies that the energy of the reflected signal across the entire target is the same. 
On the other hand, the spatial-Gaussian distributed coefficients imply that the energy of the reflected signal is most 
pronounced at the center of the targets (Wu et al., 2008). However, the two assumptions do not apply in wide range of 
real TWRI applications and we, therefore, claim in this work that it is fair and realistic to assume unknown distribution 
for the reflection coefficients, i.e., target agnostic instead. 

To the best of the authors’ knowledge, ET modeling with sparse reconstruction in TWRI has not been rigorously 
studied or modeled yet. A few recent contributions on ETs under CS are available (Lagunas, 2014; Leigsnering et al., 
2011; Zhang et al., 2015). For the CS-based reconstruction, there are two main suggested approaches to deal with 
ETs, which are wavelet decomposition (Leigsnering et al., 2011) and uniform block sparsity approaches (Lagunas, 
2014). A contribution based on wavelet transform alluded that the wavelet transform did not bode well following the 
challenges of the transform (Leigsnering et al., 2011).  On the other hand, Lagunas (2014) proposed block sparsity 
as a solution to the ET problem. The author suggested the use of block sparse reconstruction algorithm mentioning a 
block orthogonal matching pursuit (BOMP) (Eldar et al., 2010) as a possible candidate. In Wu et al. (2015) the authors 
exploited the group sparsity due to the multi-polarization sensing modality, and the clustering sparsity due to the target 
spatial extent using modified clustered multi-task Bayesian compressive sensing. These proposals are only applicable 
for rectangular shaped targets, because after vectorizing the 2D image to 1D image, the block will be dissembled to 
consecutive pixels in the 1D image with equal length. This scenario is treated as “block sparse” scheme. In real TWRI 
applications, we are dealing with more complex targets like humans, rifles, to name a few, whose shapes cannot be 
well approximated by rectangular shapes. This calls for a more generalized model. 

Unlike convex-optimization-based and greedy algorithms, Bayesian-based algorithms capitalize on the statistical 
information of the signal to enhance reconstructions (Sun et al., 2016; Zhang et al.,2015; Zhang et al., 2012). This 
has granted Bayesian-based algorithms superiority over others. Several Bayesian-based algorithms were developed to 
tackle the block-sparsity signals as in Zhang et al., 2012; Zhang, 2012. Nevertheless, they imposed some conditions 
on the distribution of the non-zero pixels and on the block-size, which might be impractical for some applications 
(Masood et al., 2013a). For instance, in TWRI applications, the target’s size, shape, and their reflectivity distributions 
are unknown a priori. 

In light of the above, the appropriate reconstruction algorithm in TWRI is desired to minimize error in 
image reconstruction, work under different block shapes and sizes, and unknown target distribution of the target 
reflectivity.

In this paper, we suggest a new ET reconstruction approach that is agnostic to the target’s shape, size, and reflectivity 
distribution, which best mimic the TWRI scenarios. The signal model is formed so that it describes the ground truth 
and may appear as block sparse vectors with unknown block sizes and unknown target distributions. The variation of 
the block sizes in the image vector reflects complex shaped target of the ground truth. 

The additional advantage of the proposed model is that if the scene comprises a mixture of PTs and ETs, it can 
reconstruct both concurrently by treating PTs as blocks of one size, contrary to the existing approaches where the two 
are reconstructed independently as in Yoon et al., 2008.

The remainder of the paper is organized as follows: Section 2 introduces the received signal model. The agnostic 
block sparse reconstruction is presented in Section 3. In Section 4, the performance metrics used are highlighted. The 
normalized mean-squared error and earth mover’s distance are defined. Sections 5 and 6 contain the results discussion 
and concluding remarks, respectively. 

RECEIVED SIGNAL MODEL
In this section, an ET signal model for 2D imaging is deduced. An example of an ET, which extends in both range 

and crossrange directions, is depicted in Fig 1 (a) and its corresponding 1D vectorized scene is depicted in Fig 1 (b). 
The distribution of the pixel intensity distribution is assumed to be unavailable a priori. The assumption is justifiable 
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in TWRI applications as in multiple target scenarios the ground truth, which is obtained by concatenating columns of 
the scene matrix, may have complicated reflectivity distributions. 

Fig. 1. Block representation of extended signal: (a) the original scene (b) vectorized scene.

Consider a synthetic aperture radar (SAR) system of N locations, which transmits at each location M equally 
spaced monochromatic signal for the scene interrogation. The target is assumed to span an area of  by . The total 
return at the  radar location due to Q ETs when the  frequency, , is transmitted can be expressed as 

       (1)

where  is the reflectivity of the point  laying on the  target and  is its corresponding delay and 
 is the contribution from the front wall. 

For highly resolved images, the scene is subdivided into small sized pixels along the crossrange and downrange. 
If  and  represent the number of pixels in crossrange and downrange, respectively, then the response in (1) can 
be expressed as

                     (2)

where  refers to the reflectivity of the  pixel laying on the  target. For mathematical simplification, we 
model the scene as the sum of disjoint ground truths assuming each target is coming from a different scene. In matrix 
form, we can write (2) as

                                        (3)

, , is a vector of reflectivities,  of the  
ground truth,  is the vector of reflectivities representing the front wall  and the entries of the matrix  
are defined as (Abdalla, et al., 2015)
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                                           (4)

 Analogous to Masood (2015),  can be further modeled as Hadamard product,  where  is the vector 
of target’s reflectivity values with unknown distribution and  is the binary vector with Bernoulli’s distribution 
indicating the presence or absence of a given target pixel.

When the ground truth, , comprises  independent and complex shaped ETs, is discretized, and then is vectorized 
by appending its columns, it results in a tall vector with  active blocks of varying length and varying probability 
density functions (pdf). The pdf of the  block in ,  is not necessarily equal to , for . Since the chunks of 
pixels are disjoint, then the probability distribution of the overall vector ,   is given by

                                                                            (5)

where  signifies the  block size, which is not necessarily the same for different values of . Equation 
(5) asserts that even if the distribution of each target is known, the overall distribution of the vectorized scene is not 
straight forward. Therefore, it is impractical to assume a particular distribution on the pixels’ value as in many Bayesian-
based algorithms. In the following section, we show how the developed algorithm is agnostic to the distribution of the 
pixels’ values. 

BLOCK SPARSE IMAGE RECONSTRUCTION
Equation (3) uses the full data sample; however , and since image vector, , is sparse, we can use the concept of CS 

to take compressed measurements using the matrix . Define the compressed observation vector, , as 

                                                                                   (6)

where the sensing matrix  is the product , and  is the additive white Gaussian noise (AWGN) vector. The 
observation vector, , can be also expressed by nonzero elements of , and their corresponding columns in , as

                                                                                                   (7)

where  represents the set of the support “locations” of the target pixels. The minimum mean squared estimate of 
 is obtained by Masood et al., 2013; Masood, 2015; Masood et al., 2013b.

                                                                     (8)

where  is a set of all possible sets of nonzero elements of . Since the distribution of the pixels’ values is unknown, 
finding the conditional expectation, , is impossible. Instead, it is approximated using best linear unbiased 
estimator given by Masood, 2015:

                                                                                (9)

We use Bayes’ rule to break down the conditional probability, , as
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                                                                             (10)

The denominator, , is a common factor to all posterior probabilities; hence it is only a scaling factor; therefore 
it can be ignored. As the target pixels are activated according to Bernoulli’s distribution with success probability, say

, we can write

                                                                              (11)

Evaluating the likelihood, , depends on the distribution of the values of the targets’ pixels, which are 
unknown. However, from (7) we can see that the measurement vector  is composed of two components. The first 
is a vector in a subspace spanned by the columns of , this vector being of unknown distribution. The second is 
the noise vector of Gaussian distribution. In the next step, we aim to eliminate the non-Gaussian components of the 
measurement vector  by projecting  on the orthogonal complement of the matrix  (Masood, 2015), denoted by 
and defined as 

                                                                              (12)

where H is the Hermitian operator. This projection leads to 

                                                                          (13)

which is a vector of Gaussian distribution with zero mean and covariance matrix given by 

                                          (14)

Now, we can express the likelihood  as 

                                          (15)

Now we can find the posterior  by substituting (15) and (11) in (10). Hence, we have all essential terms for 
evaluating the estimate in (8) and find desirable image . 

Ideally the summation in (8) should be evaluated over all possible sets in , i.e.,  possible sets of nonzero 
pixels, which is computationally expensive. However, given  to be sparse, we can evaluate the summation over sets 
for which the posteriors  are significant, as expound in next.

Finding the Block-Support Sets of the Significant PosteriorsA. 

In this section, we demonstrate a greedy algorithm for building a set, , which is composed of subsets, , of 
supports corresponding to significant posteriors , i.e.,  where  is a small number. This 
set, , is then used to replace  in (8) and hence it returns the approximate minimum mean square error (AMMSE) 
estimate of  as 

                                                                   (16)

Define a selection metric  as the logarithmic posterior, then we can write
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           (17)

The above selection metric is used for building  in a sequential greedy manner. The greedy approach starts by 
evaluating  when  is a single element, i.e., . We choose , where  is the set of 
elements corresponding to the maximum value of , i.e., . Once  is chosen, the algorithm 
searches for the nonzero-pixels in the vicinity of , where the selection metric is evaluated over , as 

, for neighbor-pixels of  as illustrated in Table 1.  We add  to the first selected set, , if the following 
condition satisfies  where , and  is an arbitrary column in . Then we evaluate  
for two elements, i.e., , we choose  corresponding to the maximum value of , along 
with its neighbors as we did in the previous step. Again, the set  is then constructed such that . This 
procedure continues in the same manner until , i.e., , where  is the number of ETs. It should 
be highlighted that the contribution of this work to the algorithm design is that the elements in the search set  are 
prioritized by their vicinity to the non-zero elements. Additionally, the search for the best  is conducted in dimensions 
of the image. If the number of the ETs is unknown, the termination criteria are , where  is a small 
number, and I is integer set greater than the expected number of ET as detailed in Table 2. 

Table 1. Finding the contributed pixels of the extended shape of the target in the vicinity of .

PERFORMANCE METRICS
To evaluate the quantitative performance, we employ two metrics: Normalized Mean-Squared Error (NMSE) and 

Earth Mover’s Distance (EMD). 

The NMSE between the estimated scene, , and the ground truth, , amounts for the deviation between estimated 
and the true image vector. Mathematically, it is given by Masood, 2015:  

                                                                                 (18)

where T is the number of Monte Carlo runs for averaging the quantity.

To evaluate the image quality of the reconstructed scene, NMSE alone is not enough as it does not ensure the pixel 
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locations in the image; thus EMD is defined as a generalized metric. The EMD signifies the level of dissimilarity between 
distributions and in this context returns the amount of image intensity that has to be moved to convert one image to the 
other. Lately, EMD became a popular metric for the image comparison (Lagunas, 2014; Leigsnering, 2015).  

Table 2. Greedy algorithm for building the searching set  for Block Bayesian-Based algorithm.

RESULTS AND DISCUSSION
In this section we present results based on MATLAB simulation and experimental data. In the simulation, three 

scenarios were implemented. The first is an ET with complicated shape, which results into blocks of varying length 
when the scene is vectorized. The second scenario assumes the Rayleigh distribution of the target pixels. The third 
scenario simulates the heterogeneous scene containing PTs and ET being reconstructed jointly. For the experimental 
part, a semi-controlled environment was used to evaluate the performance. 

Simulated ScenariosA. 

A uniform linear monostatic array composed of 77-elements with aperture length of  is deployed to capture 
the image of the scene. The center of the array assumes the system origin. A series of 201 monochromatic waves 
occupying a spectrum between 1 and 3GHz was employed for the scene interrogation. Only one fourth of the 
frequency bins and one half of the radar locations were randomly selected to capture the image of the scene where 
the imaged area was . The effect of the front wall is suppressed by spatial filtering as in (Lagunas, 2013). 
Additive white Gaussian noise with SNR of 20dB was added on the measurement and the reconstructed image is 
compared with Delay and Sum Beamforming (DSBF) under the same reduced measurement volume. We used the 
term “conventional CS” as a reference to the algorithm and the model used in (Lagunas, 2014; Leigsnering et al., 
2011; Zhang et al., 2015), while the term “Conventional Block CS” refers to the same model in (Lagunas, 2014; 
Leigsnering et al., 2011) but with Block Orthogonal Matching Pursuit (BOMP) algorithm (Eldar et al., 2010). Since 
there are various versions of block sparse algorithms, we selected BOMP as it was suggested in TWRI literature as 
a possible candidate (Lagunas, 2014).
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Fig. 2. The original scene with complex shaped target.

Three different scenarios were simulated and the block agnostic approach was compared with selected existing 
approaches: 

A.1. Complex Target with Constant Valued Reflectivity: 

In this case, a complex shaped target is simulated as shown in Fig. 2, where the horizontal and vertical axes show 
the crossrange and the downrange resolutions, respectively, in meters. The blue circles represent the locations where 
the radar measurements took place, and the color of the pixel indicates the reflection intensity with reference to the 
color-bar. The image of the scene using the block agnostic is of high quality compared to that of conventional CS 
and conventional block, BOMP in this case. Fig. 3 (a) shows the reconstructed image using DSBF with reduced data 
volume, which is highly cluttered due to the point spread function and grating lobes artifacts. The conventional CS, 
which works under PT assumption, does not well reconstruct the image as depicted in Fig. 3 (b). Also, the BOMP, 
which works under equal block sizes assumption, fail to correctly reconstruct the complex shaped target for the given 
data volume as shown in Fig. 3 (c). The relatively poor performance of the conventional equal block sizes assumption 
is due to the fact that when the scene containing complex shaped target is vectorized, it results into a vector having 
different block sizes. 
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Fig. 3. Images for uniform target: (a) DSBF; (b) Conventional CS; (c) BOMP; (d) Block Agnostic.

(a) (b)

(c) (d)

Fig. 4. Performance metrics: (a) NMSE for ET with constant reflectivity; (b) EMD for ET with constant reflectivity;
(c) NMSE for ET with Rayleigh reflectivity; (d) EMD for ET with Rayleigh reflectivity.
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To quantify the performance of the proposed reconstruction approach, NMSE and EMD were evaluated and 
averaged to 50 Monte Carlo runs. Fig. 4 (a) shows the variation of NMSE with the measurement volume. The DSBF 
shows the worst performance due to the point spreads function and grating lobes artifacts under equal data volume. 
The conventional CS shows nearly the same performance as it returns equal number of pixel each time. The block 
agnostic shows the lowest error, which improves significantly with the increase in data volume. For the EMD, the 
block agnostic shown in Fig. 4 (b) shows better results and it signifies that the approach ensures both the amplitude and 
the shape of the target. Due to its relatively poor performance, the DSBF is not shown in the EMD curves.

A.2.  Rayleigh Distributed Target Reflectivity:

An ET whose pixel values are drawn from Rayleigh distribution is assumed and the scene to be imaged is shown 
in Fig. 5.  This distribution implies that the deeper the signal traverse, the stronger it gets reflected as in the case of 
human model. A similar measurement volume to the previous case was used to capture the image. The block agnostic 
shows a better image quality compared to other simulated methods. As non-agnostic Bayesian based reconstruction 
algorithms assume Gaussian distribution for the target amplitude, they are not considered here.

Fig. 6 (a) shows the reconstructed image using DSBF with reduced data volume, which is highly cluttered due 
to the point spread function and grating lobes artifacts. Fig. 6 (b) is the conventional CS, which works under PT 
assumption, and does not well reconstruct the image, which does not consider the pixel clustering.  The reconstructed 
image using block agnostic algorithm is Fig. 6 (d) outperforms the BOMP because block agnostic algorithm ensures 
the minimum error. The good performance of block agnostic based method is possibly a result of being independent 
of the target distribution and the fact that it always minimizes the mean squared error of the estimate.

Fig. 5. The scene to be imaged.

The qualitative performance measures, NMSE and EMD, support the image qualities shown in  Fig. 4 (c), which 
shows the variation of NMSE with measurement volume for different reconstruction approaches and the block agnostic 
shows good performance due to the fact that it always ensures the minimum error. Fig. 6 (d) is the variation of EMD 
with data volume with DSBF excluded due to its worst case performance. Overall, the block agnostic approach shows 
better performance for both metrics.   
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(a) (b)

(c) (d)

Fig. 6. Images for Rayleigh Target: (a) DSBF; (b) Conventional CS; (c) BOMP; (d) Block Agnostic.

A.3. Joint ET and PT Reconstruction:

Another advantage of the proposed reconstruction approach, block agnostic, is its ability to jointly reconstruct PTs 
and ETs by treating PTs as blocks of single pixel contrary to the previous approaches where the two are reconstructed 
separately. Consider a ground truth shown in Fig. 7 containing both PTs and ET.

Fig. 7. Original scene containing PT and ET.
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The same amount of reduced data volume was used to capture the image of the scene and the block agnostic yield 
the best image quality as shown in Fig. 8. Fig. 8 (a) is the image reconstructed using DSBF and Fig. 8 (b) is the image 
using conventional CS approach. Fig. 8 (c) is the image using conventional block approach and Fig. 8 (d) represents 
the image using the block agnostic.

(a) (b)

(c) (d)

Fig. 8. Images for ET-PT joint reconstruction: (a) DSBF; (b) Conventional CS; (c) BOMP; (d) Block Agnostic.

(a) (b)

Fig. 9. Performance metrics for joint ET-PT reconstruction with data volume: (a) NMSE; (b) EMD.
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The variations of NMSE and EMD are shown in Fig. 9 (a) and (b), respectively, for different data volumes. Both metrics 
favor the block agnostic approach. The EMD curve for DSBF shows relatively low performance and it is not shown for 
clarity. The curves suggest that the performance can be further improved with expense of increasing data volume.  

B. Experimental Results1. 

An experiment was conducted in the Electrical Engineering department’s building, King Fahd University of 
Minerals and Petroleum. The setup involved two cylindrical targets of radius  located at  and  
as shown in Fig. 10. Measurement of the background was first captured to suppress front wall reflections and other 
clutters. Only 12.5% of the measurement volume was used to reconstruct the sparse images using conventional CS, 
BOMP, and block agnostic algorithms.

Fig. 11 (a) shows the image formed using DSBF with full data volume, which is used as benchmark; Fig. 11(b) 
shows the image reconstructed with conventional CS while assuming PT model. In this case, the algorithm does 
not take into account the target extent and, therefore, could not recover the shape of the target. Fig. 11 (c) shows the 
image reconstructed using BOMP giving unsatisfactory results possibly due to the size of the data volume. The block 
agnostic algorithm, on the other hand, gives more information about the target extent as shown in Fig. 11 (d).

5.2m

2.67m

0.16m

Radar Aperture
1.8m

Origin (0,0)

Target 2
(0.5,3)

Target 1
(-0.75,2)

x-axis

y- axis

0.5m

 

 

(a)  (b)  
Fig. 10. The scene: (a) room layout; (b) experimental setup.

(a) (b)
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(c) (d)

Fig. 11: Images: (a) DSBF; (b) conventional CS; (c) Conventional block sparse reconstruction; (d) Block Agnostic.

CONCLUSIONS
In this paper, a new reconstruction algorithm for ETs is suggested based on block agnostic algorithm with varying 

block sizes. The overall ground truth is considered as a sum of disjoint ground truths with different target sizes, shapes 
and following different probability distributions. The model best reflects the TWRI scenarios where the expected 
targets may possess complex shapes, which when vectorized by concatenating the columns of the discretized version 
of the ground truth results in a vector with different block sizes. This feature enables the concurrent reconstruction 
of PTs and ETs by treating PTs as blocks with only one pixel. Further, the model assumes that the distributions of the 
reflectivity values for the corresponding targets are not necessarily known. This is because in multiple and independent 
target scenario, considering the target being a human with rifle, the resulting image vector comprises chunks of 
pixels. Each chunk is drawn from different distributions making the overall pixel distribution intractable. Among 
other attractive features of the block agnostic recovery is the fact that it reconstructs the scene using minimum mean 
squared error estimator. Both qualitative and quantitative results based on MATLAB simulations and experimental 
data show the effectiveness of the block agnostic based approach. However, the size of the target influences the overall 
performance as it lowers the sparsity of the scene. 

As the extension of this work, the effect of multipath can be studied and also an appropriate multipath ghost 
suppression scheme can be suggested.
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