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ABSTRACT
The throughput of an LFSR (Linear Feedback Shift Register) is affected by the sampling rate as well as the 

clock rate. On the other hand, the system-level characteristics of an LFSR such as its error detection capabilities are 
determined by the generating polynomial. Parallel LFSRs aim at improving the sampling rate in order to meet high 
throughput demands in parallel transmission or computation environments. Moreover, programmable LFSRs provide 
more system level flexibility by allowing different generating polynomials to be used. Thus, using programmable 
parallel LFSRs looks an attractive solution to improve both throughput and system-level parameters. Programmable 
parallel LFSRs can be useful in stream ciphers, microprocessors, and many other environments. But parallelism and 
programmability can reduce the clock rate by increasing the logical depth and increase power and area by increasing 
the number of gates. Thus, we will need an efficient solution to manage the tradeoffs. This paper proposes an approach 
based on Parallel Prefix Trees (PPTs) to design programmable parallel LFSRs. PPTs are a family of topologies 
previously used in the design of parallel arithmetic circuits in order to manage the tradeoff between different circuit-
level parameters. Our approach allows designers to use different PPTs in order to improve different circuit level 
parameters. A sample PPT-based programmable parallel LFR is designed and evaluated. Empirical results show 
more than 23% improvement in throughput and more than 27% improvement in area compared to state-of- the-art 
programmable parallel LFSR architectures. 

Keywords: Parallel Prefix Tree; Parallel LFSR; Programmable LFSR; Brent-Kung; Programmable Parallel LFSR.

INTRODUCTION
Linear Feedback Shift Registers (LFSRs) are widely used in real-world applications such as generating and checking 

error detection codes (Wu, 2015; Parhi, 2004; Zhang et al., 2005), sequence generation and Pseudo-Random Number 
Generation (PRNG) ( Li et al., 2016; Rahimov et al., 2011), Automatic Test Pattern Generation (ATPG) (Acevedo et 
al., 2016; Pomeranz, 2016), Built-In Self-Test (BIST) (Ying et al., 2018; Xiang, el at., 2017; Yasodharan et al., 2014; 
Acevedo et al., 2015), coding and cryptography (Mashhady et al., 2015; Upadhyay et al., 2015; Matsui, 2014; Lee 
et al., 2014), and modular arithmetic computation (Morales-Sandoval et al., 2009). Therefore, these circuits are of 
much importance to the designers and the researchers (Li et al., 2017; Wang et al., 2016). LFSRs may occasionally be 
implemented in software (Delgado-Mohatar et al., 2011), but the common trend is to implement them in hardware by 
forming a shift register with a feedback loop and a number of GF (2) addition elements (XOR gates) that are essentially 
used to accomplish GF (2) polynomial division.

An LFSR is specified by its generating sequence that determines the locations of GF (2) addition elements on the 
feedback loop. The binary generating sequence can be represented by a GF (2) polynomial that is called the generating 
polynomial. The degree of an LFSR is defined as the number of flip-flops constructing the LFSR or equivalently the 
degree of its generating polynomial.

There are two types of LFSRs: Fibonacci-type LFSRs and Galois-type LFSRs (Wei eat al., 2015; Pomeranz, 2017). 
The XOR gates lay on the feedback loop in the former type and out of the feedback loop in the latter. The two types can 
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be converted to each other by reversing the generating sequences and selecting proper initial values (Dubrova, 2009). 
Figure 1 shows two counterpart LFSRs, one of which is of Fibonacci type and the other is of Galois type. In this paper, 
the focus is on Galois-type LFSRs because they are more common in real-world applications due to their lower delay 
in the feedback loop, which allows higher clock frequencies. We also assume that LFRS are implemented using XOR 
gates although they have occasionally been implemented using XNOR gates (Ahmad et al., 2008).

A Galois-type LFSR

A Fibonacci-type equivalent
Fig. 1. Fibonacci and Galois type LFSRs.

A programmable LFSR is an LFSR that can operate on any generating sequence with a given length in contrast 
with a static LFSR, which operates only on a specific generating sequence. 

Programmability provides system-level design flexibility by allowing the designers to select among different 
generating sequences. For instance, in LFSR-based error detection systems, programmability allows detecting different 
categories of errors by choosing different generating sequences. Programmable LFSRs have been of particular interest 
for researchers during the last decades (Ren et al., 2015; Gai et al., 1986; Toal et al., 2009; Grymel et al., 2011). 
For example, it has been proposed to use a single programmable LFSR in a microprocessor for many applications 
such as cryptography, BIST, and PRNG, each of which requires its own generating function (Gai et al., 1986). A 
programmable LFSR is shown in Figure 2.

Fig. 2. A programmable LFSR of degree .

In this figure,  through  are the flip-flops that form the shift register and the XOR gates perform the GF (2) additions 
if enabled by the corresponding AND gates according to the generating sequence ( ). The input sequence 
( ) is fed into the LFSR one bit per clock. It should be noted that there may be LFSRs, into which no data 
enters except the initial values loaded in flip-flops. In such a case, it can be assumed that . 
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Since LFSRs sample one single bit in each clock cycle, they may not be able to provide adequate throughput in 
applications where data stream arrives at a rate higher than one bit per clock or in applications in which data should be 
processed in words. This problem can be solved by using parallel LFSRs. An -bit j-parallel LFSR ( ) is a circuit 
that performs the same function as an ordinary -bit LFSR but samples j bits in each clock cycle. Therefore, parameter 
j can be viewed as the sampling rate of a parallel LFSR. 

The two notions of programmability and parallelism in LFSRs can be combined together to form a programmable 
parallel LFSR, in which the generating sequence can be changed depending on the application while the overall 
structure remains parallel. Figure 3 shows a schematic representation of such a circuit. In this figure,  represents the 
value of flip-flop  after  iterations. The oval box represents a combinational circuit that takes  through  along 
with  through  and  through  as input and produces  through  as output.

If, in addition to the generating sequence, the operational mode of a parallel LFSR is also adjustable, then a 
reconfigurable parallel LFSR is formed. It has been shown that this level of reconfigurability has an adverse effect 
on the logical depth and performance of a parallel LFSR (Zibin et al., 2013; Savic et al., 2014). On the other hand, 
programmability of the generating sequence often provides sufficient flexibility without sacrificing performance 
(Toal et al., 2009; Grymel et al., 2011). Therefore, this paper focuses only on programmable parallel LFSRs.

Fig. 3. A programmable -bit j-parallel LFSR.

Programmable parallel LFSRs, as they are, provide system level design flexibility as well as high performance. 
What we are seeking in this paper is adding circuit level design flexibility. We are going to present a flexible architecture 
for designing programmable parallel LFSRs that allows designers to select among a variety of design options. This 
will make it possible to choose among various tradeoff points depending on design objectives and constraints on 
sampling rate, clock period, and area. Similar research works have previously been presented in the area of arithmetic 
circuits on the basis of PPTs (Zarandi et al., 2014). Among the PPTs used in arithmetic circuit design, we can refer to 
Brent-Kung, Kogge-Stone, Sklansky, Knowles, Han-Carlson, and Lander-Fischer PPTs (Harris, 2003). Taxonomies 
and characterizations presented in this regard show that selecting different kinds of PPTs can improve different circuit 
level parameters. This helps the designers maneuver in a space of design schemes to manage the tradeoffs according 
to design constraints and objectives (Harris, 2003; Hoe et al., 2011).

The rest of this paper is organized as follows. Section 2 studies relevant works. Section 3 establishes a relation 
between programmable parallel LFSRs and PPTs. Section 4 discusses the design details. Section 5 presents the results 
of evaluations. Section 6 concludes the paper and suggests further works.
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RELATED WORKS
There are two categories of research works that can be considered relevant to this work. The first category consists 

of those related to the design of reconfigurable parallel LFSR and the second includes those related to PPT-based 
parallel logic circuits. Each of the two categories will be discussed in the next section.

Reconfigurable and Programmable Parallel LFSR
The design of parallel LFSR has been the focus of research for the last two decades (Hu et al., 2017; Kim et al., 

2015). There are various approaches to design such circuits (Panda et al., 2014; Singh et al., 2013; Manikandan et 
al., 2013). For example, an approach based on the Chinese Remainder Theorem (CRT) has been proposed in Chen 
(2009). An approach based on transition and control matrices has also been proposed in Grymel et al. (2011). There 
are also approaches based on division on shorter generating polynomials with less feedback terms (Glaise, 1997). 
Moreover, there are special techniques for designing parallel LFSRs for specific applications. For example, in Condo 
et al. (2014) a variable-parallelism parallel LFSR has been proposed for 3GPP-LTE/LTE-Advanced applications. As 
another example, a parallel CRC computation circuit convenient for SoCs has been proposed in Toal et al. (2009). But 
the most relevant works are those proposing approaches based on unfolding, mathematical deduction, and recursive 
equations.

A common approach for the design of parallel LFSRs is unfolding, which essentially aims at revealing hidden 
concurrencies in DSP programs. Unfolding was proposed and developed later as a technique for mitigating the problem 
of high fan-outs in LFSRs that affects the clock frequency (Zhang et al., 2005). Since this method leads to long clock 
periods and this adversely affects the throughput, it needed some optimizations in order to be convenient in high 
throughput parallel applications. For this purpose, techniques such as pipelining and retiming were considered later 
(Cheng et al., 2006). It has been proven that increasing the unfolding factor more than a specific threshold decreases 
throughput because of notable increase in the clock period. The literature comes with techniques for alleviating this 
problem (Cheng et al., 2009; Ayinala et al., 2011). Among these techniques, we can refer to those based on Look-ahead 
transformations (Lin et al., 2013).

Mathematical deduction (Parhi, 2004) is another approach that has been used by researchers to design parallel 
LFSRs. The main idea behind mathematical deduction is focusing on the mathematical function of the LFSR and 
designing circuits, which can implement the combined function of multiple iterations. Mathematical deduction may 
be based on recursive equations (Parhi, 2004). 

There are also research works that present approaches based on look-ahead for designing parallel LFSRs (Lin et 
al., 2013).

On the other hand, there are several applications in which it is very useful to choose among a number of generating 
polynomials. For instance, we can refer to microprocessors performing LFSR instructions, multiple-standard modems, 
stream ciphers, and pseudo-random number generators. Programmable and reconfigurable LFSRs have been introduced 
in response to this demand (Ouahab et al., 2017; Mishra et al., 2016; Lama et al., 2016). Combining the notions of 
parallel LFSR and reconfigurable/programmable LFSR seems a natural idea to achieve the advantages of both notions 
(Wei et al., 2015). However, the existing programmable parallel LFSRs in the literature suffer from the lack of circuit-
level design flexibility. In other words, their designs do not provide enough degree of freedom to efficiently manage 
the tradeoffs among different circuit-level design parameters such as delay and area.

The most relevant research works to which we compare our proposed architecture are Toal et al. (2009) and 
Grymel et al. (2011). A 4.92Gbps field programmable parallel CRC (Cyclic Redundancy Check) calculator has been 
designed, synthesized, and mapped to 130-nm UMC library in Toal et al. (2009) based on matrix calculations. In the 
proposed architecture, called cell array architecture, the main component consists of a number of configurable cells. 
Each cell includes two multiplexers, a configuration register, and an XOR gate. A preprocessing stage consisting of 
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a number of XOR gates along with a post-processing stage performing matrix multiplications is added to the main 
component. Another 15.38Gbps programmable parallel LFSR has been designed and mapped to the same library in 
Grymel et al. (2011). The latter programmable parallel LFSR uses XNOR gates and latches instead of multiplexers in 
the main component. We compare our proposed programmable parallel LFSR to these designs.

PPT-based parallel logic circuits
Parallel prefix trees have been studied for the last few decades (Harris, 2003). PPTs can be used as part of 

a parallel solution to any recursive equation provided that the recursive equation is stated using an associative 
operation. There are various families of PPTs with the same functionality but different structures (Jaberipur et al., 
2015; Abdel-Hafeez et al., 2013; Hobson, 2015; Kumar et al., 2015). Their structural differences create differing 
implementation complexity (Sergeev, 2013), depth (Lin et al., 2009), deficiency (Zhu et al., 2006), fan-out (Lin 
et al., 2009), problem-size-independability (Lin et al., 2009), capability of running on parallel machines (Sergeev, 
2013), convenience for running on pipeline systems (Santos, 2002), application in different branches of science 
(Lin et al., 2013), and implementation technology (Lin et al., 2003). PPTs have been previously used in the design 
of various parallel logic circuits. PPT-based parallel adders have been well studied, developed, and evaluated (Lina 
et al., 2005). The literature also comes with parallel priority encoders (Huang et al., 2002), parallel comparators 
(Abdel-Hafeez et al., 2013), parallel round robin arbiters (Ugurdag et al., 2012), and parallel, reverse converters 
(Panda et al., 2014) designed using PPTs.

PPTs AND PROGRAMMABLE PARALLEL LFSRs
PPTs are topologies originally presented to be used in prefix processing, which is a kind of parallelizable 

recursive computation. The prefix processing problem is the problem of calculating  from 
 where   and “ ” is an associative operation. In this 

paper, we define a LOO (Last Output Only) prefix processing problem as the problem of as the problem of calculating 
only  from . 

PPTs can also be modified to parallelize computations formalized as LOO prefix processing problems. To do this, 
we should simply remove the edges and nodes not contributing to the calculation of . Figure 4-a shows the Brent-
Kung PPT for . Moreover, Figure 4-b shows a LOO PPT designed on the basis of the Brent-Kung topology for 

.

An obvious serial algorithm to solve a classical prefix processing as well as a LOO prefix processing problem is 
as follows.

Algorithm (1)

Let us assume that each “ ” operation takes a single clock cycle to be accomplished using a single processing unit. 
The above serial algorithm will obviously take 4 clock cycles to accomplish assuming . But the topologies in 
Figure 4 can solve both classical and LOO prefix processing problems in 3 cycles using two processing units. This 
improvement will get more significant for larger values of .
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Fig. 4-a The Brent-Kung topology for n = 5 Fig. 4-b The Brent-Kung LOO PPT for  n = 5
Fig. 4. Sample PPTs for solving classical and LOO prefix processing problems.

There are two general challenges that need to be handled in order to use PPTs for parallelizing every sequential 
circuit. The first challenge is to restate the function of the sequential circuit in the form of a proper recursive equation. 
The second is to define a proper associative logic operation to convert the recursive equation to a prefix processing 
problem. These challenges motivate several research works (Esposito et al., 2016; Gurusamy et al., 2016; Hepzibha 
et al., 2016).

Let us resolve the first general challenge in the design of PPT-based programmable parallel LFSRs by deriving 
a recursive description of the sequential programmable LFSR shown in Figure 2. To do this, we derive the set of 
equations that state the value of each individual flip-flop at the end of the kth clock cycle, in terms of the values of the 
flip-flops in the th cycle. This set of equations is referred to as the jth State Transition Equation System (STES) 
in this paper. The logic function of the programmable LFSR of Figure 2 can be modeled by the following equation.

(1) 

In Equation 1, addition and multiplication operations are in GF (2),  denotes the value of  in the th iteration, 
and  is the value of  in the th cycle or equivalently the value on the feedback loop in the th cycle. The 
initial value of the th flip-flop is shown by . Moreover,  represents the ith least significant bit of the generating 
sequence. It is assumed that  and  because the generating polynomial must be prime and of degree  and 
indivisible by the GF(2) polynomial “x”.

During the recursive application of Equation 1,  should be replaced by  if . Moreover,  should be 
replaced by  for  in recursive applications of the equation.

The recursive nature of Equation 1 shows that we have overcome the first general challenge.



111Behrouz Zolfaghari, Mehdi Sedighi and Mehran S. Fallah

Now let us handle the second general challenge by defining a proper associative logic operation through which 
Equation 1 can be converted to a prefix processing problem. It can be easily shown that the AX (AND-XOR) operation, 
defined as follows, can meet this requirement.

Equation

The circuit shown in Figure 5 implements an AX operation. This circuit can be used as a building block in the 
proposed programmable parallel LFSR.

Fig. 5. Logic implementation of the AX operation.

There is still an extra challenge to be handled, which is specific to programmable parallel LFSRs. The problem 
here is that the recurrence in Equation 1 should be resolved for two indices (  and ), while classical PPTs have been 
originally proposed to solve single-index recursive computing problems. We solve this problem by decomposing 
Equation 1 into two LOO prefix processing problems resolved using two cascaded stages of PPTs. The first PPT stage 
calculates  (the value on the feedback loop in the th cycle) for . The second stage calculates  for 

. The jth STES of a programmable parallel LFSR consists of the two mentioned equations. Figure 6 shows 
the architecture of a PPT-based programmable parallel LFSR designed based on this approach.

Fig. 6. The architecture of a PPT-based -bit j-parallel programmable LFSR.
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Now let us start decomposing Equation 1.  This equation can be expanded as follows.

(2) 

Since  and s are given, the sum in Equation 2 can be computed using a PPT including associative AX 
operations if the s are known. The second PPT stage in Figure 6 is designed on the basis of this equation.

We can also calculate s using Equation 1 as follows.

(3)

The sum in Equation 3 can also be computed using another PPT, which constructs stage 1 of the architecture shown 
in Figure 6. Equations 2 and 3 form the jth STES of the programmable parallel LFSR of Figure 2. Equation 2 actually 
represents  equations for  different values of . We refer to these equations as the jth stage 2 STES equations in this 
paper. Also Equation 3 represents j equations for j different values of . The latter are referred to as the jth stage 1 
STES equations in this paper.

THE DESIGN METHOD
In this section, we design a programmable 8-bit 5-parallel LFSR using the proposed method to illustrate how the 

method works.

The Design of the First Stage
According to Equations 3, the 5th stage 1 STES equations of a programmable parallel LFSR of degree 8 are as 

follows.
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(3)

Each of the above equations represents a LOO prefix processing problem, which can be parallelized using a PPT. 
Figure 7 shows the first stage of a programmable 8-bit 5-parallel LFSR designed without the use of any PPT. Figure 8 
shows the same circuit in which every LOO prefix processing problem has been solved using a Brent-Kung PPT. This 
circuit has been designed as a sample by feeding the AX operation as a building block into the Brent-Kung topology. 

The Design of the Second Stage
According to Equations 2, the 5th stage 2 STES equations of a programmable parallel LFSR of degree 8 are as 

follows.

(2) 



Designing programmable parallel LFSR using parallel prefix trees114

 

Fig. 7. The first stage of the programmable 8-bit 5-parallel programmable LFSR.

Fig. 8. The first stage of the programmable 8-bit 5-parallel programmable LFSR using 
Brent-Kung PPT. 

Again, each of the above equations represents a LOO prefix processing problem, which can be parallelized using 
a PPT. Figure 9 shows a sample implementation for the second stage of the PPT-Based programmable 8-bit 5-parallel 
LFSR. Again, it has been constructed through applying the AX operation into the Brent-Kung topology. 

It should be noted here that an independent PPT should be selected for parallelizing every individual LOO prefix 
processing problem in the STES. The selected PPTs can be mutually different or the same according to the design 
objectives. Thus, this approach gives the designer at least n + j options in the circuit-level design space. This is the main 
contribution of this paper. In Figure 8, we have selected the Bren-Kung PPT only to illustrate the design process.
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Fig. 9. The second stage for a programmable 8-bit 5-parallel LFSR.

The Design of the Post Processing Module
The post processing stage should convert  to  for every . This 

stage does not depend on the generating sequence. In this stage,  should be replaced by  if <0 and  
should be replaced by  if . The following figure shows the third stage for the 8-bit 5-parallel LFSR.

Pipelined Design
A PPT-based -bit j-parallel programmable LFSR can be designed in a pipelined form. Let us assume that we 

can write j as the product of  and  ( ). We can construct a PPT-based -bit j-parallel programmable LFSR of 
 cascaded -bit -parallel programmable LFSRs with latches between them. A sample pipelined implementation is 

shown in the next section. In this case, our approach will give the designers  options, which will 
obviously be more than  assuming .
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Fig. 10. The third stage for the 8-bit 5-parallel (programmable) LFSR.

EVALUATION

As mentioned in previous sections, PPT-based programmable parallel LFSR aims at allowing designers to 
maneuver in a large space of tradeoff points order to meet circuit level design objectives. Let us assume here that 
the design objective is to maximize the throughput. The reason for making such an assumption is that the state-of-
the-art programmable parallel LFSRs have considered throughput as the main objective (Toal et al., 2009; Grymel et 
al., 2011). With such an objective, the main tradeoff in current research works is the tradeoff between the sampling 
rate and the clock frequency. The reason is that programmability and parallelism both increase the logical depth and 
consequently tend to reduce the clock frequency. It can be shown that the Brent-Kung topology minimizes the logical 
depth (Harris, 2003). Thus, we will use the Brent-Kung PPT to solve all LOO prefix processing problems in the design 
of our programmable parallel LFSR in this section. We will compare Brent-Kung programmable parallel LFSR with 
the art programmable parallel LFSRs presented in Toal et al. (2009) and Grymel et al. (2011) in terms of throughput, 
area, and power to highlight the tradeoffs. 

The degree of the generating polynomial and the sampling rate are both equal to 32 similar to Toal et al. (2009) 
and Grymel et al. (2011). Pipelining has been applied to the design. The PPT-based 32-parallel Programmable LFSR 
has been designed by cascading 8 instances of a 4-parallel programmable LFSR. Figure 11 shows the pipelined 
architecture.
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Fig. 11. Pipelined programmable 32-bit 32-parallel LFSR.

VHDL code has been used with ModelSim in the design phase and 130-nm TSMS technology has been used with 
Synopsys Design Compiler in the synthesis phase with the objective of overall optimization. In Figure 11,  is the ith 
latch temporarily storing .
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Table 1. Comparison.

 
TR GR Proposed Improvement 

TR
Improvement 

GR

Clock 
Frequency 154 MHZ 481 MHZ 592 MHz 284% 23%

Throughput 4.92 Gbps 15.38 Gbps 18.94Gbps 284% 23%

Total Power 12.21 mw 14.74 mw 18.42 mw -51% -25%

Total Area 72% 27%

In the above table, TR represents the programmable parallel LFSR designed in Toal et al. (2009) and GR represents 
the one designed in Toal et al. (2009). The above table shows a tangible improvement in the throughput (284% 
against TR and 23% against GR) and area (72% against TR and 27% against GR). But as shown in the table, this 
improvement is gained at the cost of increased power. This clarifies the reason why we have not used FPGAs in our 
design. FPGAs are widely used for rapid prototyping as well as a standalone product. However, they suffer from high 
power consumption due to their internal structure. As such, using an FPGA to measure the power consumption of a 
circuit is not a viable option and, therefore, is not common in the literature.

There is another point to consider regarding the tradeoff between area and power; reducing the area does not 
necessarily reduce the power. This is due to the fact that eliminating some circuit elements might increase the activity 
of others. The extra activity imposed on other resources might increase their dynamic power consumption. This is 
indeed the case when one moves from an ordinary serial LFSR to a parallel one.

CONCLUSIONS AND FURTHER WORKS
In this paper, a PPT-based architecture was presented for designing programmable parallel LFSRs using simple 

building blocks. This architecture allows designers to select among a variety of PPT topologies to maneuver in a large 
space of tradeoff points with respect to circuit level design objectives and constraints. We illustrated how it is possible 
to improve throughput and area using this approach at the cost of increased power. Presenting taxonomy of prefix-
based programmable parallel LFSRs designed on the basis of different PPT topologies is suggested as further work. 
The work of this paper can also be continued by developing novel PPT topologies for improving parameters such as 
throughput and power in PPT-based programmable parallel LFSRs.
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