
Designing programmable parallel LFSR using
parallel prefix trees

Behrouz Zolfaghari, Mehdi Sedighi and Mehran S. Fallah

Computer Engineering and Information Technology Department, Amirkabir University of Technology, Tehran, Iran
*Corresponding Author: msedighi@aut.ac.ir

ABSTRACT
The throughput of an LFSR (Linear Feedback Shift Register) is affected by the sampling rate as well as the

clock rate. On the other hand, the system-level characteristics of an LFSR such as its error detection capabilities are
determined by the generating polynomial. Parallel LFSRs aim at improving the sampling rate in order to meet high
throughput demands in parallel transmission or computation environments. Moreover, programmable LFSRs provide
more system level flexibility by allowing different generating polynomials to be used. Thus, using programmable
parallel LFSRs looks an attractive solution to improve both throughput and system-level parameters. Programmable
parallel LFSRs can be useful in stream ciphers, microprocessors, and many other environments. But parallelism and
programmability can reduce the clock rate by increasing the logical depth and increase power and area by increasing
the number of gates. Thus, we will need an efficient solution to manage the tradeoffs. This paper proposes an approach
based on Parallel Prefix Trees (PPTs) to design programmable parallel LFSRs. PPTs are a family of topologies
previously used in the design of parallel arithmetic circuits in order to manage the tradeoff between different circuit-
level parameters. Our approach allows designers to use different PPTs in order to improve different circuit level
parameters. A sample PPT-based programmable parallel LFR is designed and evaluated. Empirical results show
more than 23% improvement in throughput and more than 27% improvement in area compared to state-of- the-art
programmable parallel LFSR architectures.

Keywords: Parallel Prefix Tree; Parallel LFSR; Programmable LFSR; Brent-Kung; Programmable Parallel LFSR.

INTRODUCTION
Linear Feedback Shift Registers (LFSRs) are widely used in real-world applications such as generating and checking

error detection codes (Wu, 2015; Parhi, 2004; Zhang et al., 2005), sequence generation and Pseudo-Random Number
Generation (PRNG) (Li et al., 2016; Rahimov et al., 2011), Automatic Test Pattern Generation (ATPG) (Acevedo et
al., 2016; Pomeranz, 2016), Built-In Self-Test (BIST) (Ying et al., 2018; Xiang, el at., 2017; Yasodharan et al., 2014;
Acevedo et al., 2015), coding and cryptography (Mashhady et al., 2015; Upadhyay et al., 2015; Matsui, 2014; Lee
et al., 2014), and modular arithmetic computation (Morales-Sandoval et al., 2009). Therefore, these circuits are of
much importance to the designers and the researchers (Li et al., 2017; Wang et al., 2016). LFSRs may occasionally be
implemented in software (Delgado-Mohatar et al., 2011), but the common trend is to implement them in hardware by
forming a shift register with a feedback loop and a number of GF (2) addition elements (XOR gates) that are essentially
used to accomplish GF (2) polynomial division.

An LFSR is specified by its generating sequence that determines the locations of GF (2) addition elements on the
feedback loop. The binary generating sequence can be represented by a GF (2) polynomial that is called the generating
polynomial. The degree of an LFSR is defined as the number of flip-flops constructing the LFSR or equivalently the
degree of its generating polynomial.

There are two types of LFSRs: Fibonacci-type LFSRs and Galois-type LFSRs (Wei eat al., 2015; Pomeranz, 2017).
The XOR gates lay on the feedback loop in the former type and out of the feedback loop in the latter. The two types can

Journal of Engg. Research Vol. 7 No. (3) September 2019 pp. 105-122

Designing programmable parallel LFSR using parallel prefix trees106

be converted to each other by reversing the generating sequences and selecting proper initial values (Dubrova, 2009).
Figure 1 shows two counterpart LFSRs, one of which is of Fibonacci type and the other is of Galois type. In this paper,
the focus is on Galois-type LFSRs because they are more common in real-world applications due to their lower delay
in the feedback loop, which allows higher clock frequencies. We also assume that LFRS are implemented using XOR
gates although they have occasionally been implemented using XNOR gates (Ahmad et al., 2008).

A Galois-type LFSR

A Fibonacci-type equivalent
Fig. 1. Fibonacci and Galois type LFSRs.

A programmable LFSR is an LFSR that can operate on any generating sequence with a given length in contrast
with a static LFSR, which operates only on a specific generating sequence.

Programmability provides system-level design flexibility by allowing the designers to select among different
generating sequences. For instance, in LFSR-based error detection systems, programmability allows detecting different
categories of errors by choosing different generating sequences. Programmable LFSRs have been of particular interest
for researchers during the last decades (Ren et al., 2015; Gai et al., 1986; Toal et al., 2009; Grymel et al., 2011).
For example, it has been proposed to use a single programmable LFSR in a microprocessor for many applications
such as cryptography, BIST, and PRNG, each of which requires its own generating function (Gai et al., 1986). A
programmable LFSR is shown in Figure 2.

Fig. 2. A programmable LFSR of degree .

In this figure, through are the flip-flops that form the shift register and the XOR gates perform the GF (2) additions
if enabled by the corresponding AND gates according to the generating sequence (). The input sequence
() is fed into the LFSR one bit per clock. It should be noted that there may be LFSRs, into which no data
enters except the initial values loaded in flip-flops. In such a case, it can be assumed that .

107Behrouz Zolfaghari, Mehdi Sedighi and Mehran S. Fallah

Since LFSRs sample one single bit in each clock cycle, they may not be able to provide adequate throughput in
applications where data stream arrives at a rate higher than one bit per clock or in applications in which data should be
processed in words. This problem can be solved by using parallel LFSRs. An -bit j-parallel LFSR () is a circuit
that performs the same function as an ordinary -bit LFSR but samples j bits in each clock cycle. Therefore, parameter
j can be viewed as the sampling rate of a parallel LFSR.

The two notions of programmability and parallelism in LFSRs can be combined together to form a programmable
parallel LFSR, in which the generating sequence can be changed depending on the application while the overall
structure remains parallel. Figure 3 shows a schematic representation of such a circuit. In this figure, represents the
value of flip-flop after iterations. The oval box represents a combinational circuit that takes through along
with through and through as input and produces through as output.

If, in addition to the generating sequence, the operational mode of a parallel LFSR is also adjustable, then a
reconfigurable parallel LFSR is formed. It has been shown that this level of reconfigurability has an adverse effect
on the logical depth and performance of a parallel LFSR (Zibin et al., 2013; Savic et al., 2014). On the other hand,
programmability of the generating sequence often provides sufficient flexibility without sacrificing performance
(Toal et al., 2009; Grymel et al., 2011). Therefore, this paper focuses only on programmable parallel LFSRs.

Fig. 3. A programmable -bit j-parallel LFSR.

Programmable parallel LFSRs, as they are, provide system level design flexibility as well as high performance.
What we are seeking in this paper is adding circuit level design flexibility. We are going to present a flexible architecture
for designing programmable parallel LFSRs that allows designers to select among a variety of design options. This
will make it possible to choose among various tradeoff points depending on design objectives and constraints on
sampling rate, clock period, and area. Similar research works have previously been presented in the area of arithmetic
circuits on the basis of PPTs (Zarandi et al., 2014). Among the PPTs used in arithmetic circuit design, we can refer to
Brent-Kung, Kogge-Stone, Sklansky, Knowles, Han-Carlson, and Lander-Fischer PPTs (Harris, 2003). Taxonomies
and characterizations presented in this regard show that selecting different kinds of PPTs can improve different circuit
level parameters. This helps the designers maneuver in a space of design schemes to manage the tradeoffs according
to design constraints and objectives (Harris, 2003; Hoe et al., 2011).

The rest of this paper is organized as follows. Section 2 studies relevant works. Section 3 establishes a relation
between programmable parallel LFSRs and PPTs. Section 4 discusses the design details. Section 5 presents the results
of evaluations. Section 6 concludes the paper and suggests further works.

Designing programmable parallel LFSR using parallel prefix trees108

RELATED WORKS
There are two categories of research works that can be considered relevant to this work. The first category consists

of those related to the design of reconfigurable parallel LFSR and the second includes those related to PPT-based
parallel logic circuits. Each of the two categories will be discussed in the next section.

Reconfigurable and Programmable Parallel LFSR
The design of parallel LFSR has been the focus of research for the last two decades (Hu et al., 2017; Kim et al.,

2015). There are various approaches to design such circuits (Panda et al., 2014; Singh et al., 2013; Manikandan et
al., 2013). For example, an approach based on the Chinese Remainder Theorem (CRT) has been proposed in Chen
(2009). An approach based on transition and control matrices has also been proposed in Grymel et al. (2011). There
are also approaches based on division on shorter generating polynomials with less feedback terms (Glaise, 1997).
Moreover, there are special techniques for designing parallel LFSRs for specific applications. For example, in Condo
et al. (2014) a variable-parallelism parallel LFSR has been proposed for 3GPP-LTE/LTE-Advanced applications. As
another example, a parallel CRC computation circuit convenient for SoCs has been proposed in Toal et al. (2009). But
the most relevant works are those proposing approaches based on unfolding, mathematical deduction, and recursive
equations.

A common approach for the design of parallel LFSRs is unfolding, which essentially aims at revealing hidden
concurrencies in DSP programs. Unfolding was proposed and developed later as a technique for mitigating the problem
of high fan-outs in LFSRs that affects the clock frequency (Zhang et al., 2005). Since this method leads to long clock
periods and this adversely affects the throughput, it needed some optimizations in order to be convenient in high
throughput parallel applications. For this purpose, techniques such as pipelining and retiming were considered later
(Cheng et al., 2006). It has been proven that increasing the unfolding factor more than a specific threshold decreases
throughput because of notable increase in the clock period. The literature comes with techniques for alleviating this
problem (Cheng et al., 2009; Ayinala et al., 2011). Among these techniques, we can refer to those based on Look-ahead
transformations (Lin et al., 2013).

Mathematical deduction (Parhi, 2004) is another approach that has been used by researchers to design parallel
LFSRs. The main idea behind mathematical deduction is focusing on the mathematical function of the LFSR and
designing circuits, which can implement the combined function of multiple iterations. Mathematical deduction may
be based on recursive equations (Parhi, 2004).

There are also research works that present approaches based on look-ahead for designing parallel LFSRs (Lin et
al., 2013).

On the other hand, there are several applications in which it is very useful to choose among a number of generating
polynomials. For instance, we can refer to microprocessors performing LFSR instructions, multiple-standard modems,
stream ciphers, and pseudo-random number generators. Programmable and reconfigurable LFSRs have been introduced
in response to this demand (Ouahab et al., 2017; Mishra et al., 2016; Lama et al., 2016). Combining the notions of
parallel LFSR and reconfigurable/programmable LFSR seems a natural idea to achieve the advantages of both notions
(Wei et al., 2015). However, the existing programmable parallel LFSRs in the literature suffer from the lack of circuit-
level design flexibility. In other words, their designs do not provide enough degree of freedom to efficiently manage
the tradeoffs among different circuit-level design parameters such as delay and area.

The most relevant research works to which we compare our proposed architecture are Toal et al. (2009) and
Grymel et al. (2011). A 4.92Gbps field programmable parallel CRC (Cyclic Redundancy Check) calculator has been
designed, synthesized, and mapped to 130-nm UMC library in Toal et al. (2009) based on matrix calculations. In the
proposed architecture, called cell array architecture, the main component consists of a number of configurable cells.
Each cell includes two multiplexers, a configuration register, and an XOR gate. A preprocessing stage consisting of

109Behrouz Zolfaghari, Mehdi Sedighi and Mehran S. Fallah

a number of XOR gates along with a post-processing stage performing matrix multiplications is added to the main
component. Another 15.38Gbps programmable parallel LFSR has been designed and mapped to the same library in
Grymel et al. (2011). The latter programmable parallel LFSR uses XNOR gates and latches instead of multiplexers in
the main component. We compare our proposed programmable parallel LFSR to these designs.

PPT-based parallel logic circuits
Parallel prefix trees have been studied for the last few decades (Harris, 2003). PPTs can be used as part of

a parallel solution to any recursive equation provided that the recursive equation is stated using an associative
operation. There are various families of PPTs with the same functionality but different structures (Jaberipur et al.,
2015; Abdel-Hafeez et al., 2013; Hobson, 2015; Kumar et al., 2015). Their structural differences create differing
implementation complexity (Sergeev, 2013), depth (Lin et al., 2009), deficiency (Zhu et al., 2006), fan-out (Lin
et al., 2009), problem-size-independability (Lin et al., 2009), capability of running on parallel machines (Sergeev,
2013), convenience for running on pipeline systems (Santos, 2002), application in different branches of science
(Lin et al., 2013), and implementation technology (Lin et al., 2003). PPTs have been previously used in the design
of various parallel logic circuits. PPT-based parallel adders have been well studied, developed, and evaluated (Lina
et al., 2005). The literature also comes with parallel priority encoders (Huang et al., 2002), parallel comparators
(Abdel-Hafeez et al., 2013), parallel round robin arbiters (Ugurdag et al., 2012), and parallel, reverse converters
(Panda et al., 2014) designed using PPTs.

PPTs AND PROGRAMMABLE PARALLEL LFSRs
PPTs are topologies originally presented to be used in prefix processing, which is a kind of parallelizable

recursive computation. The prefix processing problem is the problem of calculating from
 where and “ ” is an associative operation. In this

paper, we define a LOO (Last Output Only) prefix processing problem as the problem of as the problem of calculating
only from .

PPTs can also be modified to parallelize computations formalized as LOO prefix processing problems. To do this,
we should simply remove the edges and nodes not contributing to the calculation of . Figure 4-a shows the Brent-
Kung PPT for . Moreover, Figure 4-b shows a LOO PPT designed on the basis of the Brent-Kung topology for

.

An obvious serial algorithm to solve a classical prefix processing as well as a LOO prefix processing problem is
as follows.

Algorithm (1)

Let us assume that each “ ” operation takes a single clock cycle to be accomplished using a single processing unit.
The above serial algorithm will obviously take 4 clock cycles to accomplish assuming . But the topologies in
Figure 4 can solve both classical and LOO prefix processing problems in 3 cycles using two processing units. This
improvement will get more significant for larger values of .

Designing programmable parallel LFSR using parallel prefix trees110

Fig. 4-a The Brent-Kung topology for n = 5 Fig. 4-b The Brent-Kung LOO PPT for n = 5
Fig. 4. Sample PPTs for solving classical and LOO prefix processing problems.

There are two general challenges that need to be handled in order to use PPTs for parallelizing every sequential
circuit. The first challenge is to restate the function of the sequential circuit in the form of a proper recursive equation.
The second is to define a proper associative logic operation to convert the recursive equation to a prefix processing
problem. These challenges motivate several research works (Esposito et al., 2016; Gurusamy et al., 2016; Hepzibha
et al., 2016).

Let us resolve the first general challenge in the design of PPT-based programmable parallel LFSRs by deriving
a recursive description of the sequential programmable LFSR shown in Figure 2. To do this, we derive the set of
equations that state the value of each individual flip-flop at the end of the kth clock cycle, in terms of the values of the
flip-flops in the th cycle. This set of equations is referred to as the jth State Transition Equation System (STES)
in this paper. The logic function of the programmable LFSR of Figure 2 can be modeled by the following equation.

(1)

In Equation 1, addition and multiplication operations are in GF (2), denotes the value of in the th iteration,
and is the value of in the th cycle or equivalently the value on the feedback loop in the th cycle. The
initial value of the th flip-flop is shown by . Moreover, represents the ith least significant bit of the generating
sequence. It is assumed that and because the generating polynomial must be prime and of degree and
indivisible by the GF(2) polynomial “x”.

During the recursive application of Equation 1, should be replaced by if . Moreover, should be
replaced by for in recursive applications of the equation.

The recursive nature of Equation 1 shows that we have overcome the first general challenge.

111Behrouz Zolfaghari, Mehdi Sedighi and Mehran S. Fallah

Now let us handle the second general challenge by defining a proper associative logic operation through which
Equation 1 can be converted to a prefix processing problem. It can be easily shown that the AX (AND-XOR) operation,
defined as follows, can meet this requirement.

Equation

The circuit shown in Figure 5 implements an AX operation. This circuit can be used as a building block in the
proposed programmable parallel LFSR.

Fig. 5. Logic implementation of the AX operation.

There is still an extra challenge to be handled, which is specific to programmable parallel LFSRs. The problem
here is that the recurrence in Equation 1 should be resolved for two indices (and), while classical PPTs have been
originally proposed to solve single-index recursive computing problems. We solve this problem by decomposing
Equation 1 into two LOO prefix processing problems resolved using two cascaded stages of PPTs. The first PPT stage
calculates (the value on the feedback loop in the th cycle) for . The second stage calculates for

. The jth STES of a programmable parallel LFSR consists of the two mentioned equations. Figure 6 shows
the architecture of a PPT-based programmable parallel LFSR designed based on this approach.

Fig. 6. The architecture of a PPT-based -bit j-parallel programmable LFSR.

Designing programmable parallel LFSR using parallel prefix trees112

Now let us start decomposing Equation 1. This equation can be expanded as follows.

(2)

Since and s are given, the sum in Equation 2 can be computed using a PPT including associative AX
operations if the s are known. The second PPT stage in Figure 6 is designed on the basis of this equation.

We can also calculate s using Equation 1 as follows.

(3)

The sum in Equation 3 can also be computed using another PPT, which constructs stage 1 of the architecture shown
in Figure 6. Equations 2 and 3 form the jth STES of the programmable parallel LFSR of Figure 2. Equation 2 actually
represents equations for different values of . We refer to these equations as the jth stage 2 STES equations in this
paper. Also Equation 3 represents j equations for j different values of . The latter are referred to as the jth stage 1
STES equations in this paper.

THE DESIGN METHOD
In this section, we design a programmable 8-bit 5-parallel LFSR using the proposed method to illustrate how the

method works.

The Design of the First Stage
According to Equations 3, the 5th stage 1 STES equations of a programmable parallel LFSR of degree 8 are as

follows.

113Behrouz Zolfaghari, Mehdi Sedighi and Mehran S. Fallah

(3)

Each of the above equations represents a LOO prefix processing problem, which can be parallelized using a PPT.
Figure 7 shows the first stage of a programmable 8-bit 5-parallel LFSR designed without the use of any PPT. Figure 8
shows the same circuit in which every LOO prefix processing problem has been solved using a Brent-Kung PPT. This
circuit has been designed as a sample by feeding the AX operation as a building block into the Brent-Kung topology.

The Design of the Second Stage
According to Equations 2, the 5th stage 2 STES equations of a programmable parallel LFSR of degree 8 are as

follows.

(2)

Designing programmable parallel LFSR using parallel prefix trees114

Fig. 7. The first stage of the programmable 8-bit 5-parallel programmable LFSR.

Fig. 8. The first stage of the programmable 8-bit 5-parallel programmable LFSR using
Brent-Kung PPT.

Again, each of the above equations represents a LOO prefix processing problem, which can be parallelized using
a PPT. Figure 9 shows a sample implementation for the second stage of the PPT-Based programmable 8-bit 5-parallel
LFSR. Again, it has been constructed through applying the AX operation into the Brent-Kung topology.

It should be noted here that an independent PPT should be selected for parallelizing every individual LOO prefix
processing problem in the STES. The selected PPTs can be mutually different or the same according to the design
objectives. Thus, this approach gives the designer at least n + j options in the circuit-level design space. This is the main
contribution of this paper. In Figure 8, we have selected the Bren-Kung PPT only to illustrate the design process.

115Behrouz Zolfaghari, Mehdi Sedighi and Mehran S. Fallah

Fig. 9. The second stage for a programmable 8-bit 5-parallel LFSR.

The Design of the Post Processing Module
The post processing stage should convert to for every . This

stage does not depend on the generating sequence. In this stage, should be replaced by if <0 and
should be replaced by if . The following figure shows the third stage for the 8-bit 5-parallel LFSR.

Pipelined Design
A PPT-based -bit j-parallel programmable LFSR can be designed in a pipelined form. Let us assume that we

can write j as the product of and (). We can construct a PPT-based -bit j-parallel programmable LFSR of
 cascaded -bit -parallel programmable LFSRs with latches between them. A sample pipelined implementation is

shown in the next section. In this case, our approach will give the designers options, which will
obviously be more than assuming .

Designing programmable parallel LFSR using parallel prefix trees116

Fig. 10. The third stage for the 8-bit 5-parallel (programmable) LFSR.

EVALUATION

As mentioned in previous sections, PPT-based programmable parallel LFSR aims at allowing designers to
maneuver in a large space of tradeoff points order to meet circuit level design objectives. Let us assume here that
the design objective is to maximize the throughput. The reason for making such an assumption is that the state-of-
the-art programmable parallel LFSRs have considered throughput as the main objective (Toal et al., 2009; Grymel et
al., 2011). With such an objective, the main tradeoff in current research works is the tradeoff between the sampling
rate and the clock frequency. The reason is that programmability and parallelism both increase the logical depth and
consequently tend to reduce the clock frequency. It can be shown that the Brent-Kung topology minimizes the logical
depth (Harris, 2003). Thus, we will use the Brent-Kung PPT to solve all LOO prefix processing problems in the design
of our programmable parallel LFSR in this section. We will compare Brent-Kung programmable parallel LFSR with
the art programmable parallel LFSRs presented in Toal et al. (2009) and Grymel et al. (2011) in terms of throughput,
area, and power to highlight the tradeoffs.

The degree of the generating polynomial and the sampling rate are both equal to 32 similar to Toal et al. (2009)
and Grymel et al. (2011). Pipelining has been applied to the design. The PPT-based 32-parallel Programmable LFSR
has been designed by cascading 8 instances of a 4-parallel programmable LFSR. Figure 11 shows the pipelined
architecture.

117Behrouz Zolfaghari, Mehdi Sedighi and Mehran S. Fallah

Fig. 11. Pipelined programmable 32-bit 32-parallel LFSR.

VHDL code has been used with ModelSim in the design phase and 130-nm TSMS technology has been used with
Synopsys Design Compiler in the synthesis phase with the objective of overall optimization. In Figure 11, is the ith
latch temporarily storing .

Designing programmable parallel LFSR using parallel prefix trees118

Table 1. Comparison.

TR GR Proposed Improvement

TR
Improvement

GR

Clock
Frequency 154 MHZ 481 MHZ 592 MHz 284% 23%

Throughput 4.92 Gbps 15.38 Gbps 18.94Gbps 284% 23%

Total Power 12.21 mw 14.74 mw 18.42 mw -51% -25%

Total Area 72% 27%

In the above table, TR represents the programmable parallel LFSR designed in Toal et al. (2009) and GR represents
the one designed in Toal et al. (2009). The above table shows a tangible improvement in the throughput (284%
against TR and 23% against GR) and area (72% against TR and 27% against GR). But as shown in the table, this
improvement is gained at the cost of increased power. This clarifies the reason why we have not used FPGAs in our
design. FPGAs are widely used for rapid prototyping as well as a standalone product. However, they suffer from high
power consumption due to their internal structure. As such, using an FPGA to measure the power consumption of a
circuit is not a viable option and, therefore, is not common in the literature.

There is another point to consider regarding the tradeoff between area and power; reducing the area does not
necessarily reduce the power. This is due to the fact that eliminating some circuit elements might increase the activity
of others. The extra activity imposed on other resources might increase their dynamic power consumption. This is
indeed the case when one moves from an ordinary serial LFSR to a parallel one.

CONCLUSIONS AND FURTHER WORKS
In this paper, a PPT-based architecture was presented for designing programmable parallel LFSRs using simple

building blocks. This architecture allows designers to select among a variety of PPT topologies to maneuver in a large
space of tradeoff points with respect to circuit level design objectives and constraints. We illustrated how it is possible
to improve throughput and area using this approach at the cost of increased power. Presenting taxonomy of prefix-
based programmable parallel LFSRs designed on the basis of different PPT topologies is suggested as further work.
The work of this paper can also be continued by developing novel PPT topologies for improving parameters such as
throughput and power in PPT-based programmable parallel LFSRs.

REFERENCES
Abdel-Hafeez, S., Gordon-Ross, A. & Parhami, B. 2013. Scalable digital CMOS comparator using a parallel prefix tree. IEEE

Trans. Very Large Scale Integr. Syst. 21.

Acevedo, O. & Kagaris, D. 2016. On The Computation of LFSR Characteristic Polynomials for Built-In Deterministic Test
Pattern Generation. IEEE Trans. Comput. 65(2).

Acevedo, O. & Kagaris, D. 2015. On the computation of LFSR characteristic Polynomials for built-in deterministic test pattern
generation. IEEE Trans. Comput. 64.

Ahmad, A. & Al-Maashri, A. 2008. Investigating some special sequence lengths generated in an external exclusive-NOR type
LFSR. J. Comput. Electr. Eng. 34.

Ayinala, M. & Parhi, K.K. 2011. High-speed parallel architectures for linear feedback shift registers. IEEE Trans. Signal Process.
59.

Chen, H. 2009. CRT-based high-speed parallel architecture for long BCH encoding. IEEE Trans. Circuits Syst. II Express Briefs.
56.

119Behrouz Zolfaghari, Mehdi Sedighi and Mehran S. Fallah

Cheng, C. & Parhi, K.K. 2006. High-speed parallel CRC implementation based on unfolding, pipelining, and retiming. IEEE
Trans. Circuits Syst. II Express Briefs. 53.

Cheng, C. & Parhi, K.K. 2009. High speed VLSI architecture for general linear feedback shift register (LFSR) structures. Proc.
43rd Asilomar Conf. Signals, Syst. Comput.

Condo, C., Martina, C., Piccinini, M. & Masera, G. 2014. Variable parallelism cyclic redundancy check circuit for 3gpp-Lte/
Lte-advanced. IEEE Signal Process. Lett. 21.

Delgado-Mohatar, O., Fúster-Sabater A. & Sierra J.M. 2011. Performance evaluation of highly efficient techniques for software
implementation of LFSR. J. Comput. Electr. Eng. 37.

Dubrova, E. 2009. A transformation from the fibonacci to the galois nlfsrs. IEEE Trans. Inf. Theory 55(11).

Esposito, D., Caro, D.D. & Strollo, A.G.M. 2016. Variable Latency Speculative Parallel Prefix Adders for Unsigned and Signed
Operands. IEEE Trans. Circuits Syst. I 63(8).

Gai, S., Lioy, A. & Neri, F. 1986. VLSI implementation of linear feedback shift registers for microprocessor applications.
Microprocess. Microprogramming. 18.

Glaise, R.J. 1997. A two-step computation of cyclic redundancy code CRC-32 for ATM networks. IBM J. Res. Dev. 41.

Grymel, M. & Furber S.B. 2011. A novel programmable parallel CRC circuit. IEEE Trans. Very Large Scale Integr. Syst. 19.

Gurusamy, L., Kashif, M. & Julai, N. 2016. Design and Implementation of an Efficient Hybrid Parallel-Prefix Ling Adder Using
0.18micron CMOS Technology in Standard Cell Library. App. Mec. Mat. 833.

Harris, D. 2003. A taxonomy of parallel prefix networks. Proc. Thirty-Seventh Asilomar Conf. Signals, Syst. Comput.

Hepzibha, K.G. & Subha, C.P. 2016. A novel implementation of high speed modified brent kung carry select adder. 10th Int.
Conf. Intell. Syst. Control.

Hobson, R.F. 2015. A framework for high-speed parallel-prefix adder performance evaluation and comparison. Int. J. Circuit
Theory Appl. 43.

Hu, G., Sha, J. & Wang, Z. 2017. High-Speed Parallel LFSR Architectures Based on Improved State-Space Transformations.
IEEE Trans. on Very Large Scale Integr. Syst. 25(3).

Huang, C.-H., Wang, J.-S. & Huang, Y.-C. 2002. Design of high-performance CMOS priority encoders and incrementer/
decrementers using multilevel lookahead and multilevel folding techniques. IEEE J. Solid-State Circuits. 37.

Jaberipur, G. & Langroudi, S.H.F. 2015. (4+2logn) Δg parallel prefix modulo-(2^n-3) adder via double representation of residues
in [0,2]. IEEE Trans. Circuits Syst. II Express Briefs. 62.

Kim, H., Lee, Y. & Kim, J-H. 2015. Low-complexity CRC-aided early stopping unit for parallel turbo decoder. Electron. Lett.
51(21).

Kumar, P.S., Sivakumar, N. & Rao, D.S. 2015. Design and implementation of hybrid parallel prefix adder. Int. J. Emerg. Eng.
Res. Technol. 3.

Lama Shaer, L., Sakakini, T., Kanj, R. & Chehab, A. & Kayssi, A. 2016. A low power reconfigurable LFSR. 18th Mediterr.
Electro. Conf.

Lee, M.T. & Su, C.M. 2014. Iterative image encryption based on the dyadic displacement and linear feedback shift register in
discrete wavelet transform. Proc. Int. Symp. Comput. Consum. Control.

Li, C., Zeng, X., Li, C., Helleseth, T. & Li, M. 2016. Construction of de Bruijn Sequences From LFSRs With Reducible
Characteristic Polynomials. IEEE Trans. Inf. Theory 62(1).

Li, M. & Lin, D. 2017. The Adjacency Graphs of LFSRs with Primitive-Like Characteristic Polynomials. IEEE Trans. Inf. Theory
63(2).

Lin, J.C., Chen, S.J. & Hu, Y.H. 2013. Cycle-efficient LFSR implementation on word-based microarchitecture. IEEE Trans.
Comput. 62.

Lin, Y.-C. & Hung, L.-L. 2009. Straightforward construction of depth-size optimal, parallel prefix circuits with Fan-out 2. ACM

Designing programmable parallel LFSR using parallel prefix trees120

Trans. Des. Autom. Electron. Syst. 14.

Lin, Y.-C. & Hung, L.-L. 2009. Fast problem-size-independent parallel prefix circuits. J. Parallel Distrib. Comput. 69.

Lin, R., Nakano, K., Olariu, S. & Zomaya, Y. 2003. An efficient parallel prefix sums architecture with domino logic. IEEE Trans.
Circuits Syst. 14.

Lina, Y.-C. & Sub, C.-Y. 2005. Faster optimal parallel prefix circuits: new algorithmic construction. J. Parallel Distrib. Comput
65.

Manikandan, S.K., Sharmitha, E.K., Angeline, M.N. & Palanisamy, C. 2013. High throughput LFSR design for BCH encoder
using sample period reduction technique for MLC NAND based flash memories. Int. J. Comput. Appl. 66.

Mashhadi, S. & Dehkordi, M.H. 2015. Two verifiable multi secret sharing schemes based on nonhomogeneous linear recursion
and LFSR public-key cryptosystem. J. Inf. Sci. 294.

Matsui, H. 2014. Lemma for linear feedback shift registers and DFTs applied to affine variety codes. EEE Trans. Inf. Theory 60.

Mishra, S., Tripathi, R.R. & Tripathi, D.Kr. 2016. Implementation of configurable linear feedback shift register in VHDL. Int.
Conf. on Emerg. Trends in Elec. Electron. Sustain. Energy Syst.

Morales-Sandoval, M., Feregrino-Uribe C., Kitsos P. & Cumplido R. 2009. Area/performance trade-Off analysis of an FPGA
digit-serial GF(2^M) Montgomery multiplier based on LFSR. J. Comput. Electr. Eng. 35.

Ouahab, Y., Rashidzadeh, R. & Muscedere, R. 2017. A secure scan chain using a phase locking system and a reconfigurable
LFSR. IEEE 30th Can. Conf. Elec. and Comput. Eng.

Panda, A.S. & Moganti, G.L.K. 2014. A high-speed pipelined design for CRC-8 ATM-HEC circuit and a comparative study with
its parallel and serial counterparts. Int. J. Adv. Res. Comput. Commun. Eng. 3.

Parhi, K. K. 2004. Eliminating the fanout bottleneck in parallel long BCH encoders. IEEE Trans. Circuits Syst. 51.

Pomeranz, I. 2016. Computing Seeds for LFSR-Based Test Generation from Nontest Cubes. IEEE Trans. Very Large Scale Integr.
Syst. 24(6).

Pomeranz, I. 2017. LFSR-Based Generation of Multicycle Tests. IEEE Trans. on Comput.-Aided Design Integr. Circuits Syst.
36(3).

Rahimov, H. M. Babaei, M. & Farhadi, M. 2011. Cryptographic PRNG based on combination of LFSR and chaotic logistic map.
J. Appl. Math. 2.

Ren., H. & Xiong, Z. 2015. A Multi-polynomial LFSR Based BIST Pattern Generator for Pseudorandom Testing. 2nd Int. Conf.
Inf. Sci. Control Eng.

Santos, E.E. 2002. Optimal and efficient algorithms for summing and prefix summing on parallel machines. J. Parallel Distrib.
Comput. 62.

Savic, N., Stojcev, M., Nicolic, T., Petrovic, V. & Jovanovic, G. 2014. Reconfigurable low power architecture for fault tolerant
pseudo-random number generation. J. Circuits, Syst. Comput. 23.

Sergeev, I.S. 2013. On the complexity of parallel refix circuits. Proc. Electron. Colloq. Comput. Complex.

Singh, S., Sujana, S., Babu, I. & Latha, K. 2013. VLSI implementation of parallel CRC using pipelining, unfolding and retiming.
IOSR J. VLSI Signal Process. 2.

Toal, C., McLaughlin, K., Sezer, S. & Yang, X. 2009. Design and implementation of a field programmable CRC circuit architecture.
IEEE Trans. Very Large Scale Integr. Syst. 17.

Toal, C., McLaughlin, K., Sezer, S. & Yang, X. 2009. Design and implementation of a field programmable CRC circuit
architecture. IEEE Trans. Very Large Scale Integr. Syst. 17: 1142-1147.

Ugurdag, H.F. & Baskirt, O. 2012. Fast parallel prefix logic circuits for n2n round-robin arbitration. Microelectronics J. 43.

Upadhyay, D., Shah, T. & Sharma, P. 2015. Cryptanalysis of hardware based stream ciphers and implementation of GSM stream
cipher to propose a novel approach for designing n-bit LFSR stream cipher. 19th Int. Symp. VLSI Design. Test.

Wang, Q. & Tan, C.H. 2016. Proof of a conjecture and a bound on the imbalance properties of LFSR subsequences. Discrete

121Behrouz Zolfaghari, Mehdi Sedighi and Mehran S. Fallah

Appl. Math. 211.

Wei, L. & Yang, X. 2015. A Parallel and Reconfigurable United Architecture for Fibonacci and Galois LFSR. 7th Int. Conf.
Intelligent Human-Machine Systems and Cybernetics.

Wu, Y. 2015. New Scalable Decoder Architectures for Reed–Solomon Codes. IEEE Trans. Commun. 63(8).

Xiang, D., Wen, X. & Wang, L-T. 2017. Low-Power Scan-Based Built-In Self-Test Based on Weighted Pseudorandom Test
Pattern Generation and Reseeding. IEEE Trans. Very Large Scale Integr. Syst. 25 (3).

Yasodharan, S. & Swamynathan, S.M. 2014. Low power test pattern generation in BIST schemes. Int. J. Eng. Res. Gen. Sci. 2.

Ying, J-C., Tseng, W-D. & Tsai, W-J. 2018. Asymmetry dual-LFSR reseeding for low power BIST. Integration, the VLSI Journal
60.

Zarandi, A.A.E., Molahosseini, A.S., Hosseinzadeh, M., Sorouri, S., Antão, A. & Sousa, L. 2014. Reverse converter design
via parallel-prefix adders: novel components, methodology and Implementations. IEEE Trans. Very Large Scale Integr. Syst.
23.

Zhang, X. & Parhi, K. K. 2005. High-speed architectures for parallel long BCH encoders. IEEE Trans. Very Large Scale Integr.
Syst. 13.

Zhu, H., Cheng, C.-k. & Graham, R. 2006. Constructing zero-deficiency parallel prefix circuits of minimum depth. ACM Trans.
Des. Autom. Electron. Syst. 11.

Zibin, D., Longmei, N., Xuan Y. & Xiaonan L. 2013. Design and implementation of configurable LFSR instructions targeted at
stream ciphers. J. Circuits, Syst. Comput. 22.

Submitted: 29/08/2017
Revised: 08/01/2018
Accepted: 11/04/2018

Designing programmable parallel LFSR using parallel prefix trees122

PPTs Â«b���U� W��d�K� WK�U� W�“«u�� LFSR rOLB�

Õö� Ê«dN�Ë wG�bO� ÍbN� ¨Í—U�UH�Ë“ “ËdN�

Ê«d�≈ ¨Ê«dN
 ¨UO�u�uMJ�K� dO�U�dO�√ WF�U� ¨ÈU�uKF*« UO�u�uMJ�Ë d�uO�LJ�« W�bM� r��

W�ö)«

 r�� ¨Èd�√ WO�U� s� Æs�«e��« ‰bF� v�≈ W�U{ùU� ÈUMOF�« —UO��« ‰bF0 ©LFSR® WF&d*« WOD)« W�cG��« Èö�� WO�U��« d�Q��

 ·bN� ÆœËb(« …œbF�� bO�u� WD�«u� ª¡UD�_« ·UA��« vK
 …—bI�« ∫q�� ¨LFSR s� ÂUEM�« Èu��� vK
 hzUB)« b�b%

 W��u(« Ë√ ‰U�—ù« ÈU�O� w� WO�UF�« WO�U��ù« ÈU�KD�� WO�K� q�√ s� ÈUMOF�« —UO��« ‰bF� 5�% v�≈ W�“«u�*« LFSRs
 Â«b���U� ÕUL��« ‰ö� s� ÂUEM�« Èu��� vK
 W�Ëd*« s� b�e*« W��d�K� WK�UI�« LFSRs d�u� ¨p�– vK
 …Ëö
 ÆW�“«u�*«

 ÈULKF� s� q� 5���� ÎU�«c� Îö� Ëb�� W��d�K� WK�UI�« W�“«u�*« LFSRs Â«b���« ÊS� ¨w�U��U�Ë ÆWHK��*« œËb(« È«œbF��

 WIO�b�« ÈU'UF*«Ë ¨w�UO��ô« dOHA��« w� …bOH� W��d�K� WK�UI�« W�“«u�*« LFSRs ÊuJ� b�Ë ÆÂUEM�« Èu���Ë WO�U��ù«

 …œU�“ o�d
 s
 s�«e��« ‰bF� s� qOKI��« vK
 öLF� Ê√ sJ1 W��d��« WOK�U�Ë Í“«u��« sJ�Ë ÆÈd�_« ÈU�O��« s� b�bF�«Ë

 Õd�I� ÆÈU�—UI*« …—«œù ‰UF� q� v�≈ ÃU��M� ¨w�U��U�Ë ÆÈU�«u��« œb
 …œU�“ o�d
 s
 W�U�*«Ë W�UD�« …œU�“Ë wIDM*« oLF�«

 W
uL�� w� PPTs ÆW��d�K� WK�UI�« W�“«u�*« LFSRs rOLB�� ©PPTs® W�“«u�� WzœU� —U�	√ vK
 eJ�d� ZN� Y���« «c�

 Èu��* WHK��*« ÈULKF*« 5� ÈU�—UI*« …—«œ≈ q�√ s� W�“«u�*« WO�U�(« dz«Ëb�« rOLB� w� ÎUI�U� W�b��� Ô*« UO�u�u�D�« s�

 rOLB� - Æ…dz«b�« Èu��* ÈULKF*« nK��� 5���� WHK��� PPTs Ÿ«u�√ Â«b���U� 5LLBLK� `L�� ZNM�« «c�Ë Æ…dz«b�«

 23 s
 b�e� W��M� WO�U��ù« w� s�% WO��d���« ZzU�M�« ÈdN�√Ë ÆPPT vK
 eJ�d� W��d�K� q�U� Í“«u�� LFR Ã–u/ rOOI�Ë

ÆWO�U(« W��d�*« W�“«u�*« LFSR W�bMN� ÎW�—UI� W�U�*« w� • 27 s
 b�e� W��M� s�% p�c�Ë •

