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ABSTRACT

Data collection is one of the most important and costly steps of pavement management systems. Traditional 
methods have been widely replaced with automated data collection vehicles due to their advantages such as safety, 
accuracy, precision, standardization, and repeatability. However, these vehicles are very expensive due to several 
high-cost sensors mounted on-board, which might not be financially efficient. The main goal of this paper is to propose 
a cost-effective data collection approach utilized to reconstruct the 3D model of a pavement surface, which can be 
utilized to evaluate pavement condition. For this purpose, an inexpensive sensor called Kinect V2 is applied including 
both cameras and infrared projector to capture depth data. Having calibrated the sensor and captured data, the color 
images were stitched together. Then, the depth data was added to the stitched images so that the 3D model of pavement 
was built. This approach makes a significant difference in terms of total cost of data collection for pavement distresses, 
in which their main feature is elevation such as roughness and rutting. 

Keywords: Kinect V2, 3D Reconstruction, Scale invariant feature transform, Random sample consensus, Conformal 
coordinate transformation, Affine coordinate transformation. 

INTRODUCTION

Roads always play a key role in the sustainable development of countries with regard to mobility of passengers 
and commodities. Roads should not stop operating due to some defects. Road maintenance is of significant importance 
to assure high quality services and continuous operability of roads. For this reason, an optimized maintenance plan 
should be developed to indicate appropriate time, treatment actions, and road section to be maintained over the life 
span of roads. With this regard, the concept of pavement management systems (PMSs) was developed (Shahin 2002).

The main concept of pavement management is to solve a multi-objective optimization problem, which should 
answer to three questions: Which road sections should be maintained? What type of treatment should be applied? 
When the road sections should be treated? This optimization should be conducted with regard to the increase in road 
overall condition and decrease in total life cycle costs (Golabi et al., 1982). The network level perspective as well as 
project level view is considered before any action is executed (Shahin, 2002). 

Data collection is the main core of a PMS and is often the most expensive one. Pavement data can be collected 
using variety of methods. Generally speaking, there are two different methods used to collect pavement condition 
data including manual and automated (NCHRP, 2004; Findley et al., 2011). Each method has some advantages and 
disadvantages in terms of associated quality, time, and cost. So, there is a trade-off between collecting data at a high 
quality level and being cost effective. 

Manual data collection methods employ an expert or a team of experts who can detect, recognize, and quantify 
distresses that exist on pavement (NCHRP, 2004; Findley et al., 2011). There is a certain amount of subjectivity and 
uncertainty in collected data due to expert judgments on distress types, severity, and density. Manual pavement data 
collection is time consuming and laborious, unsafe, unable to cover the entire road networks, and susceptible to lack 
of integrity.
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Automated data collection methods usually deploy a vehicle with a series of sensors such as lasers, high resolution 
cameras, accelerometers, Global Positioning System (GPS), and radar to capture pavement condition. Automated data 
collection is classified into two categories, that is, semi-automated and fully automated (NCHRP, 2004; Findley et al., 
2011). In order to differentiate between these two categories, two different steps in pavement condition assessment 
should be clearly defined: data collection and data processing. In the semi-automated approach, the data collection 
step is automated but the data processing including distress detection and definition in terms of type, severity, and 
density are manual, while, in the automated approach, both data collection and processing are automated (NCHRP, 
2004; Findley et al., 2011). In summary, the automated data collection method is fast, accurate, precise, and repeatable. 
However, it is of high cost in terms of operation and maintenance.

Literature Review

Automated data collection vehicles have been widely employed by ministries of transportation and private 
companies around the globe. For instance, the Automated Road Analyzer (ARAN) is applied in North America 
(Tahberer, 2012), PAVUE is utilized in the European countries (Wang, 1999), Hawkeye is developed by the ARRB 
Engineering group in Australia (Novak, 1993), Komatsu is deployed in Japan (Fukuhara et al., 1990), and ROMDAS 
is used in New Zealand (Bennett, 1998). Most of the vehicles only capture and store the data on an on-board external 
drive. Data processing (e.g., image processing) is conducted in an office to acquire pavement condition information 
out of the collected data. Image processing is one of the most important techniques to assist pavement data processing. 
Pynn et al. developed an image processing method based on video images collected with a van to automatically detect 
cracks (Pynn et al., 1999). To detect and classify pavement cracks using captured images, also, the photogrammetry 
technique was proposed by Mustaffara et al. (2008). 

The 3D surface reconstruction is an excellent approach in the measurement of pavement unevenness, e.g., 
roughness and rutting. It relies on 3D point clouds collected by laser scanners or stereo-vision algorithms using a pair 
of video cameras (Koch and Brilakis, 2011). Yu et al. proposed an integrated multi-sensor method for pavement 3D 
mapping (Yu et al., 2007). Li et al. developed a real-time 3D laser scanner to collect 3D pavement surface data (Li et 
al., 2010). An automated pavement data collection system has been introduced by Ouyang and Xu using a 3D camera 
and a structured laser light to obtain pavements transverse profile (Ouyang and Xu, 2013). Although the photometric 
techniques have been successfully deployed to reconstruct the 3D pavement surface, due to the immaturity or high 
cost they are not feasible (Grendy et al., 2011).

Microsoft Kinect is a notable inexpensive sensor able to generate real-time geometric feature, color, and audio data 
of the environment (Sanna et al., 2013). It consists of an infrared projector and infrared/color cameras that produce 
color and depth images (Microsoft Xbox Group, 2016). Although it is a multi-sensor device, it is inexpensive because 
of its mass production as being part of the Microsoft Xbox gaming console. Aiming at broadening the Xbox users 
beyond its usual gamer base, the company released the first generation of the Kinect in November 2010. Afterwards, 
in February 2012, they released Kinect V1 (for Windows). Then, the second generation (Kinect V2) was first released 
in 2014. Kinect V2 has a few advantages over Kinect V1. Table 1 summarizes the major differences between Kinect 
V1 and V2 (Gonzalez et al., 2015; Pagliari et al., 2014). 

Kinect has been applied in various fields of study due to its mature techniques and affordable expenses. For 
instance, Kinect has been successfully employed for medical care studies especially in the field of rehabilitation. 
Lange et al. investigated and proved Kinect applicability in clinical use (Lange et al., 2012). Application of Kinect 
was studied in physical rehabilitation by Chang et al. The authors claimed that they can provide competitive motion 
tracking performance in comparison with other professional motion detection systems (Chang et al., 2012).

The application of Kinect as a navigation sensor for mobile robotics and depth data in indoor mapping was 
investigated (Khoshelham and Elberink, 2012; Oliver et al., 2012). 

In the field of pavement condition data collection, Joubert et al. utilized a Microsoft Kinect and a high-speed USB 
camera as pothole detection tools (Joubert et al., 2011). Kamal et al. utilized Kinect as a sensor for pothole imaging and 
metrology (Kamal et al., 2016). Jahanshahi et al. applied Kinect as a data collection tool to detect potholes (Jahanshahi 
et al., 2013). They claimed that the automated data collection vehicles are very costly because of a series of expensive 
mounted sensors that may not be necessary to be applied at the network level. They declared that these vehicles usually 
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consist of sensors such as high-resolution digital cameras, which require advanced illumination systems to provide 
uniform lighting condition in the captured images. The digital camera and laser-illumination module, laser road-
imaging system, on these vehicles cost about $150,000. Moreover, pavement surface profiler and laser sensors, which 
are commonly used for rutting-depth or surface-roughness measurement, cost about $130,000–$150,000. However, 
Kinect can minimize pavements data collection costs (Jahanshahi et al., 2013).

To sum up, a little attention has been paid by researchers to detect distresses on pavement using Kinect, only 
in terms of crack depth perception and pothole detection. However,  reconstruction of pavement mosaic has not 
been conducted using Kinect because of its complexity. The complexity is related to recognizing detectable features 
on pavement surface in order to stitch adjacent depth images and build up continuous film of pavement surface to 
calculate distresses associated with height such as roughness and rutting.  

Objective and Scope

This paper is aimed at deploying a cost-effective sensor with embedded camera and infrared projector called 
Kinect V2 to build up a 3D mosaic of pavement surface, which provides appropriate source of information to measure 
pavement distresses related to deformation such as roughness and rutting that can be ultimately employed for pavement 
management. The scope of this paper is limited to application of Kinect V2 mounted on a portable stand capturing 
data. The mosaic is developed based upon asphalt pavement. 

METHODOLOGY
The first step was to calibrate color and depth cameras. The internal parameters of the cameras including focal 

length and principal point coordinates along with factors related to radial and tangential distortions were obtained to 
calculate real coordinate of each point of pavement surface. The second step was data acquisition. An optimum vertical 
distance of cameras from pavement surface was determined to maximize the accuracy of collected data. To achieve 
an adequate overlap between adjacent images considering the optimum vertical distance, a number of stations across 
and along pavement were determined. Deploying the optimum distance, color and depth images of pavement were 
collected by Kinect V2. The third step was to develop a 3D model of pavement. Due to lack of features of pavement 
surface, 3D modeling with conventional methods such as Iterative Closest Point (ICP) was not possible. Therefore, a 
novel approach was proposed and applied to develop a 3D model of pavement surface in this research. The flowchart 
of the research methodology is shown in Fig. 2.

Fig. 1. Research Methodology.
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Camera Calibration
Regardless of the quality/resolution of a camera and embedded lens, camera calibration was an essential step to 

measure internal parameters and interior orientation of the camera in order to adjust distortions caused by the lens. The 
prime parameters generally recognized include the following:

- (f): camera focal length                  
- (xP, yP): principal point offset                       
- (k1, k2, k3): radial lens distortion parameters  
- (p1, p2): tangential distortion parameters  
The camera focal length is a measure of how strong the system converges or diverges light.  This length is a distance 

over which initially collimated rays are brought to a focus. A system with a shorter focal length has more optical 
power than one with a longer focal length. A line through camera center and perpendicular to a principal plain is the 
principal axis. A principal point is a perpendicular intersection point of a principal axis and an image plain, which is 
illustrated in Fig. 3 (Hartley and Zisserman, 2003).

Fig. 2. Principle point and focal length (Hartley and Zisserman, 2003).

Lens distortions including radial and tangential are the main factors affecting camera calibration. Radial 
distortion causes image position to be distorted along a radial line from the optical axis, while tangential distortion/
decentering is due to imperfect centering of the lens components and other manufacturing defects. There are 
different methods applied for calibration. Self-calibration is the most practical one, in which camera interior 
parameters with lens distortion factors are simultaneously calculated (Fraser, 1997). The collinearity is the main 
mathematical term that be used in self-calibration. This mathematical term describes the relationship between any 
point in image space, the camera perspective center, and the same point in the object space. It assumes that the 
light ray is a straight line at the moment of exposure. That is, the exposure station, image point, and the object point 
must lie on a single straight line (ray). The mathematical form of the collinearity condition can be represented as 
below (Fryer and Brown, 1986):

                                                                                                                                (1)

                                                            (2)

                                                                                            (3)

                                                                                          (4)

                                                                                                                                                                    (5)

                                                                                                                                                              (6)
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where (x, y, 0) denote coordinates of an image point; (xp, yp, f) are interior orientation parameters (coordinates of a 
principal point and focal length); (m11, … , m33) are elements of rotation matrix; (Xc, Ycc, Zc) denote coordinates of a 
perspective center; and (X, Y, Z) are coordinates of an object point.  and  are the image coordinate perturbation terms. 

Calibration of color and depth cameras was conducted based on a standard method using two separate test fields. 
Regarding the color camera, 20 images from different angles and at different distances were taken from a planar 
chessboard as shown in Fig. 4. From each image, 77 corresponding points were extracted (intersection of grids) to 
implement collinearity condition accompanied with radial and tangential distortions. 

Fig. 3. Test field for color camera calibration.

However, in order to calibrate the depth camera, it was necessary that a plain with elevated targets was considered, 
which were clearly recognizable in the depth images. Therefore, three pairs of converged images were captured using 
a test field with 30 elevated targets to calibrate the depth camera as shown in Fig. 5. The distance, diameter, and 
elevation of targets were 20, 5, and 10 centimeters, respectively. 

Fig. 4. Test-field for depth camera calibration (depth image (left), color image (middle), and targets (right)).

Using equation (7) depth camera calibration parameters can be computed. 

                                                                                                                        (7)

Equation (7) shows collinearity condition in which R and T are rotation and transition matrices, respectively.     
 are coordinates of points in an image space,  denote coordinates of points in an object space, 

and t is transpose. By substituting the corresponding points of two different images in Equation (7), the following 
equation is derived.

                                                                                                (8)
l and r represent the left and right images, respectively. Solving Equation (8) for all corresponding points of 

different images, cameras internal parameters and distortion were obtained in a bundle adjustment process.



Data Collection 
Kinect V2 is employed to collect required data including depth and color images. The schematic hardware platform 

that was designed for data collection is illustrated in Fig 5. Accuracy of depth images is the most important stage in 
reconstruction of 3D modeling of pavement surface. Therefore, the depth images (i.e., from the camera to a reference 
plain) derived from Kinect V2 were compared to ground truth. The ground truth was measured applying a high accuracy 
laser rangefinder. This comparison was replicated ten times at the interval of 100 mm at the distance between 600 mm 
and 1500 mm. Using the Kinect, 20,000 depth points were extracted at each distance from one depth image. Evaluating 
ten images for each distance resulted in 200,000 depth points. Upper and lower thresholds (i.e., mean  3 standard 
deviation) were specified in each depth image to eliminate noises. Then, mean, standard deviation, median, mode, and 
error were determined for each distance (presented in Table 2) to indicate which distance has the highest accuracy in 
terms of estimating ground truth.

Fig. 5. Data collection hardware platform.
As clearly shown in Table 2, the optimum distance between Kinect V2 and the reference plain is equal to 1100 mm 

due to its lowest error. Based on this optimum distance, the scanned area was equal to 1400 *1150 mm. This optimum 
distance was applied for data collection to build a 3D model of pavement surface.  The data collection was performed 
based upon 15 - 25% of image overlap. To achieve this overlap, the data collection stations were set up at the interval 
of one meter at both transverse and longitudinal directions.

 Reconstruction of Road Surface
Due to lack of features of pavement surface, depth images cannot solely be registered. Therefore, a novel registering 

approach applying adjacent color images was proposed in this research. To register corresponding depth and color 
images, orientation of color and depth cameras was carried out. The 3D modeling approach consists of five steps, 
which are described below.

Align RGB and Depth Camera
The color and depth cameras in Kinect V2 are not coincident. Therefore, aligning two cameras is essential. To 

align color and depth cameras, the conformal coordinate transformation was used, which is the easiest method of 
transforming two coordinate systems (Bingqian, 2014). The conformal transformation has four parameters, two of 
which are related to the horizontal and vertical shifts, third one is related to rotation, and the fourth parameter is a scale 
factor. To compute the parameters, first, two color and depth images were taken from a same scene with both color 
and depth cameras. Then, the coordinates of the corresponding points in both images were specified. The conformal 
parameters were computed applying the following equations (Bingqian, 2014):

                                                                                                              (9)

                                                                                                           (10)



where X0 and Y0 are the x and y transformed coordinates, m denotes the scale factor, Δx and Δy are translations 
(shifts), and α denotes rotation. Having assumed a = m.cosα, b = m.sinα, c = Δx, and d = Δy, Equations (9) and (10) are 
rewritten applying these assumptions as follows:

                                                                                                                                                   (11)

                                                                                                                                                  (12)
The above mentioned equations can be represented in the matrix format as follows:

                                                                                                                     (13)

Regarding the fact that tan (α) = b/a, the required angle of rotation was calculated. Also, the scale factor can be 
determined using Equation (14). 

m2  a2   b2                                                                                                                                                                    (14)
To calculate the four aforementioned parameters (i.e., a, b, c, and d), coordinates of two corresponding points in 

the color and depth images were applied to write four equations. If the targets, hence the number of equations, are 
increased, the parameters can be found more accurately using the method of least squares. To specify the corresponding 
points in the color and depth images, it was necessary that a plain with elevated targets was considered so that they 
were clearly recognizable in the depth images. For this purpose, a plain shown in Fig. 5 was used to test the depth and 
color of images captured. 

Registering Color Images

The first stage of registering two color images was feature extraction. Features utilized to match two images are 
too diverse. Matching methods are divided into two main categories: area based and feature based (Zitova and Flusser, 
2003). In the area-based methods, features that are used in the matching process are the entire image pixels. 

In the feature-based methods, sensible and specified features should be automatically detected and extracted. These 
features can be conventional (e.g., edges, lines, balance curves, and areas), prominent (e.g., corners and intersection 
of lines), and statistical (e.g., center of gravity). In feature-based methods, different descriptors are used, which should 
meet ideally the following requirements:

- Invariance: descriptors of corresponding features on the target image and the reference have to be the same.
- Uniqueness: two different features should have different descriptors.
- Stability: descriptors of a feature deformed slightly have to be close to the original descriptor of the feature.
- Independence: if the descriptor is a vector, its elements must be independent functions.
Although descriptors do not normally have these requirements at the same time, descriptors with most of these 

requirements should be used. A comprehensive assessment was conducted on performance of various descriptors 
(Mikolajczyk and Schmid, 2005). The authors proposed that the Scale Invariant Feature Transform (SIFT) descriptor 
expressed the best performance. The SIFT algorithm is a method to detect and extract independent and distinct features 
from the images that was developed by David Lowe in 1999. This algorithm is often utilized for applications such as 
object recognition, matching images, tracking and building 3D sceneries, object retrieval in multimedia databases, and 
autonomous robots. The SIFT algorithm is faster and more precise in terms of calculation than other algorithms. The main 
stages for revealing and extracting features based on the SIFT algorithm applied herein are as follows (Lowe, 2004):

Revealing extremums of scale space
For this purpose, the first target image was formed at different scales. Then, for each image scale called octave, several 

images with different standard deviations were constructed (Fig. 6). Images with different standard deviations were created 
by multiplying Gaussian kernel at the original image. After that, the difference between adjacent images was obtained per 
octave. The obtained results (using Equations 1517-) are called Difference of Gaussian images (DOG).
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Fig. 6. Image pyramid formation using Gaussian function (Lowe, 2004).

                                                                                                                                     (15)

                                                                                                                          (16)

                            (17)

where I is the original image, G is the Gaussian kernel function, which produces image L with convolution 
multiplication, and k denotes a coefficient (i.e., integer number). By subtracting two resulting images per octave, 
image D is produced based on DOG. 

Recognizing local extremums as key points:
The gray values of each pixel were compared with eight adjacent pixels as well as nine pixels in upper and lower 

adjacent images. The images with different σ were achieved by DOG as shown in Fig. 7. If the value of this pixel was 
more or less than all 26 neighbor pixels, it would be selected as a candidate/ key point.

Fig. 7. Indicating key point (Lowe, 2004).

Determining the location of key points:
The next step after indicating the key points was matching them with adjacent data in terms of location, scale, and 

proportion of the original curves. Using this information, the key points with low contrast that were sensitive to noise 
were deleted. The key points located along the edge were also removed using the Hessian matrix (H) via Equation 
(18) (Lowe, 2004). 

                                                                                                                                                  (18)

Each derivative of Hessian matrix was obtained using the difference between neighbor points. Calculating the 
trace and determinant of the matrix H, the points that did not satisfy following condition were discarded from the set 
of the key points.
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                                                                                                                                       (19)

where r is a result of division of maximum eigenvalue to minimum its values and D is the Difference-of-Gaussian 
function. The gradient value m(x, y) and also orientation θ(x, y) of each key point were determined using the following 
formulas (Lowe, 2004).

                               (20)

                                                                                        (21)

As a result, an n*4 matrix was formed for all the key points.

                                                                                                                                            (22)

Forming a descriptor of the key points:
To identify descriptors of the key points, first, windows with 16*16 pixels were selected around the key point 

locations. In the selected windows, gradient of each pixel was calculated using the adjacent pixels with size 4*4. Then, 
at the center of 16 pixels, the results of pixel gradients in four main directions and their bisectors were drown. The 
associated histograms were established in that each histogram includes eight branches. As a result, each descriptor 
included an array of four histograms. Therefore, each descriptor of SIFT was a vector with 8*4*4=128 elements. In 
Fig. 8, these operations are shown for the 8*8 window.

Fig. 8. Formation of descriptor for key points (Lowe, 2004).

Matching extracted features from two images:
A descriptor with 128 arrays of an original image was compared with all descriptor vectors of the key points in 

a target image using the inner product of two vectors. The concept of inner product according to the vector analysis 
is the same as the minimum Euclidean distance. The inner product of descriptor vectors from two images was a 
vector matrix of 1*n in which n is the number of the key points in a target image. Then, the matrix was sorted 
from the lowest values of an array to the highest values. For each descriptor in a target picture, the first and second 
close descriptors were selected as the descriptors for the main image. A pair of close descriptors were utilized to 
determine a pair of the corresponding key points. If the ratio of distance of the first minimum element to the second 
minimum element in inner product vector was lower than a threshold, the two key points in the two images as two 
corresponding points were selected. In this research, sensitivity analysis on the threshold was carried out and finally 
a value of 0.6 was selected.
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Eliminating outliers with the Random Sample Consensus algorithm:
The Random Sample Consensus (RANSAC) algorithm is an iterative method to estimate parameters of a 

mathematical model from a set of observed data that contains outliers. This algorithm was introduced in 1981 by 
Fischler and Bolles. The RANSAC algorithm assumes that model parameters can be estimated with the correct data 
set in such a way that it optimally fits the data. The outliers occur because of noises, incorrect measurements, and false 
assumptions about the interpretation of data. The main difference between RANSAC and the method of least squares 
is related to the fitting approach. The least squares method fits an inaccurate line into all data including outliers. But, 
the RANSAC algorithm fits an accurate line on data after removing outliers.

Matching color images 

After extracting the corresponding points from two adjacent color images, they were matched using the affine 
geometrical transformation, which was based on two transition parameters along x and y directions (Δx and Δy), 
one rotation parameter (α), two scale factors along x and y directions (mx and my), and one parameter related to 
deviation from verticality (β) (Bingqian, 2014). These parameters were calculated using the following equation with 
six equations associated with three corresponding points:
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(X, Y) is transferred coordinate of (x, y). Having assumed a = mx.cosα, b = -my.sin(α+β), c = Δx, d = mx.sinα, 
e=my.cos(α+β) and f =Δy, Equation (23) was simplified and rewritten as follows:

                                                                                                                                                                (24)
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It is worth noting that the matching process was executed between only two images with an adequate overlap (i.e., 
more than 25% coverage). In order to register all color images, first the adjacent images were matched with each other 
across the pavement. After registering all color images in the transverse direction and combining them into a single 
image, these images were matched in the longitudinal direction to create a color image mosaic.

 Depth data registration and reconstructing 3D model
After constructing the color image mosaic, each depth image was transferred to the space of corresponding color 

image using conformal parameters. Finally, registration of transferred depth images and formation of 3D point clouds 
were carried out based on affine transformation parameters achieved.

The depth data collected by Kinect V2 contained some noises. To remove the noises, two steps were taken. Firstly, 
the isolated data (single points) were removed. Secondly, having assumed a threshold (herein ±100 mm), data with 
less or more depth values than 1100 ± threshold were eliminated. Certainly, using different filters such as the median 
filter also resulted in smoothing of the depth data.

Results and Discussion
The proposed method was verified by taking some samples from pavement surfaces with different levels of 

roughness. The experiment was conducted in a portable static state condition using a single Kinect V2. Three main 
steps of the abovementioned approach including calibration process, color and depth data collection, and pavement 
3D reconstruction were carried out on the samples as described below.
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Calibration Process
The color camera was calibrated using a planar checkerboard with 20 pictures from different angles and distances, 

while the depth camera calibration was executed using elevated targets via taking three pairs of images in the field. 
In the calibration process, the internal orientation parameters (focal length and principle points) and distortion were 
simultaneously obtained based on collinearity condition. Table 3 shows the results of color and depth cameras 
calibration.

Applying calibration parameters on color and depth images resulted in calibrated images without any distortion 
effects. Calibration of depth data was also carried out through development of a correlation equation between depth 
data captured by Kinect V2 and the ground truth (measured via an accurate laser rangefinder). To develop this equation, 
the depth data was collected by Kinect V2 at ten vertical distances between Kinect V2 and pavement from 600 to 
1500 mm (at an interval of 100 mm). The mean of 1,000 points randomly extracted from each image was defined as a 
calculated depth data and plotted against the ground truth. Several curves were fitted to the data. The best fitness was 
proposed by a quadratic polynomial function as shown in Fig. 9.

Fig. 9. Diagram of real depth value versus measured distance by Kinect V2.

As Fig. 9 shows, the relationship between the calculated depth data and ground truth is as follows:

                                                                                                                         (25)
Z and z specify ground truth and calculated depth data, respectively. Using Equation 25, the calculated depth data 

was corrected to be applied in 3D modeling.

Data Collection
Design of experiment was carried out with regard to the fact that a variety of pavement roughness levels were 

captured to ensure the proposed methodology was valid in different roughness conditions. For this purpose, a pilot 
study was performed to indicate appropriate pavement sections. Then, numerous images were taken from the sections 
at the optimum vertical distance, i.e., 1100 mm and the horizontal interval of one meter along and across the pavement 
(25% overlap of adjacent images). At each station, three depth images were captured during daytime without direct 
sunlight. The mean depth was utilized for further calculation resulting in reducing noise and increasing accuracy of 
depth data. Fig. 10 shows the color and depth images taken from six adjacent stations across the pavement, which 
were registered.
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Fig. 10. Data samples collected by Kinect: (left) depth images; (right) corresponding color images.

Pavement 3D Reconstruction

Aligning the color and depth cameras was the first step in 3D reconstruction of pavement surface. As mentioned 
earlier, conformal geometry transformation was applied for orientation of cameras. This transformation was simple 
and provided higher accuracy than other transformations to align the cameras. To calculate the conformal parameters, 
it was necessary to determine the coordinates of at least two corresponding points in two color and depth corresponding 
images. If the targets, hence the number of equations, were increased, the parameters would be indicated more 
accurately using the method of least squares. 

After the color and depth images were captured from the test field with elevated targets, the method of least squares 
was used to determine the unknown parameters. Points in the two corresponding images were identified through 
application of the Australis software (Photometrix Company 2015) presented in Table 4. The related conformal 
parameters are summarized in Table 5. Regarding the coordinate transformation of color and depth cameras, it 
was assumed that the color image was the reference space and the top left corner of color images was the original 
coordinate. Also, the x and y axes were from left to right and top to bottom directions, respectively.

The SIFT algorithm was employed for registration of color images. The SIFT first extracted all the key points 
in the images and then determined the corresponding points in two adjacent images as shown in Fig. 11. Having 
employed the RANSAC algorithm, the corresponding key point outliers were eliminated. Table 6 shows extracted key 
points by SIFT and effects of the RANSAC algorithm to discard outliers. 

Fig. 11. Corresponding key points in two adjacent images. Images 1 and 2 (left) and images 4 and 5 (right).
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As shown in Table 6, the number of key points in each image extracted by the SIFT algorithm is much more than 
the number of corresponding key points. Also, the RANSAC algorithm reduces the number of corresponding points 
by eliminating outliers. The number of key points in images 1, 2, and 3 is 22479, 30679, and 29365, respectively. 
The SIFT detected only 178 points as corresponding key points for registration of images 1 and 2. Likewise, 93 
points were indicted as corresponding key points for registration of images 2 and 3,  while 97 and 28 points were 
removed by RANSAC from 178 corresponding points in images 1 and 2, and 93 corresponding points in images 2 
and 3, respectively. That is, in the first step of the registration of color images within the pavement sections, around 
40 percent of points were discovered incorrectly as key points. But, by repeating the above process and increasing the 
number of pixels in registered images (12- and 23- integrated images), the number of corresponding key points was 
increased and the percentage of error was drastically decreased. This fact is also visible in registration of other images. 
To sum up, it was concluded that, in the beginning of the registration process of color images, correct key points were 
the least accurate. 

In the registration process, only two adjacent color images were jointly registered at a time. Therefore, registration 
of all images required an iterative process. Fig. 12 illustrates this process.

Fig. 12. Matching process of six color images using SIFT and RANSAC. 
Determining of affine geometric transformation parameters was an output of color image registration that plays 

a crucial role in depth images matching. Correct corresponding key points were utilized to calculate the affine 
transformation parameters. Affine transformation parameters for some paired images are shown in Table 7.

Then, registration of depth images was carried out as depicted in Fig. 13. Finally, 3D reconstruction of pavement 
surface was accomplished. As illuminated in Fig. 13, the 3D model of pavement was made with high accuracy. 
Irregularities in the pavement surface including existing pothole are quite evident.

One of the most important applications of 3D models reconstruction based on registration of color images is 
to compute pavement roughness such as International Roughness Index (IRI), which is an ongoing research being 
conducted by the authors. Furthermore, these color images are of significant importance to recognize distresses such 
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as longitudinal and transverse cracks and measure their severity and density more accurate than 3D models. For 
instance, as shown in Figure 13, a transverse crack and a pothole were present on the pavement. Having utilized the 
color images of the pavement, length of crack and dimension of pothole were determined; i.e., crack length was 2500 
mm and pothole dimensions were 1600 x 900 (length, width). But, the depth of the pothole should be calculated using 
3D models. Therefore, more distresses can be identified on pavement surface using data derived from both 3D models 
and color images.

A single drawback of the proposed approach is to be time consuming due to a massive number of computations 
related to two described processes. The first one is color image registration, which is an iterative process. In each 
iteration, the number of pixels in the registered images is increased. Therefore, the SIFT algorithm spends significant 
amount of time to find the corresponding points. The second time-consuming process is the limitation of color image 
registration; i.e., only two images can be matched at a time so that the more pavement length/color images, the more 
computational time required. However, the time-consuming issue can be conquered through application of a computer 
with powerful and parallel processors.

Fig. 13. (Left) color images matched, (middle) corresponding depth image matched, and
 (right) 3D pavement mosaic for 3 and 6 images.

CONCLUSION
Data acquisition is the core of pavement management systems, which is costly and time consuming. To date, several 

automated data collection methods have been studied, which reduce the duration of data collection but have not been 
very successful in decreasing costs. In this research, a cost-effective approach was presented for a 3D reconstruction 
of pavement surface. The proposed approach employed remarkably inexpensive Microsoft Kinect V2 to collect 
pavement surface data. Registering depth data and 3D modeling of pavement surface with conventional methods such 
as Iterative Closest Point (ICP) was not possible due to complexity of the pavement. Therefore, a novel approach 
was proposed based on color image registration. Since the color image and depth cameras did not conform, they 
were aligned using the conformal geometrical transformation. To register the color images, the SIFT algorithm was 
employed. The outliers in the color images were discarded using RANSAC algorithm. Having transferred the depth 
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data into the space of the color data through conformal parameters, the affine geometrical transformation resulted in 
the conformity of the depth data. This led to a 3D model of the pavement surface in a continuous film wherein the 
3D coordinates of any image point were obtainable. Experimental field data showed that the proposed approach was 
capable of providing results with high accuracy. It is concluded that Kinect V2 has the potential to be deployed as a 
cost-effective tool in pavement surface modelling. This model can be easily utilized to calculate pavement roughness 
and other pavement distresses such as potholes. 

FUTURE WORKS
The effects of each parameter in the registration of color images in the SIFT algorithm such as the number of 

octaves should be examined. And, the optimum value for each parameter must be indicated. In addition, pavement 
management indexes like International Roughness Index (IRI) based on proposed approach should be evaluated and 
validated by automated data collection vehicles. 
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Table 1. Difference between Kinect V1 & V2 (Gonzalez et al., 2015; Pagliari et al., 2014).

Feature Kinect V1 Kinect V2

Method of calculate depth of object in scene Structured light Time of flight

Dimension of Depth camera (pixel) 640*480 512*424

Dimension of Color camera (pixel) 640*480 @ 30 fps 1920*1080 @ 30 fps

Horizontal field of view 57 degrees 70 degrees

Vertical field of view 43 degrees 60 degrees

Tilt motor Yes No

Max depth distance 4 m 8 m

Min depth distance 80 cm 50 cm

Table 2. Descriptive statistics of distances measured by the Kinect.

Ground 
Truth (1)

Kinect Error =                   
((1)-(2))/(1)Mean Observed Depth (2) Standard Deviation Mode Median

600 595.5 8.2 587 595 0.008

700 696.7 3.3 697 697 0.005

800 788.3 9.4 790 789 0.015

900 891.4 7.6 894 892 0.010

1000 994.5 6.2 998 995 0.006

1100 1098.8 7.0 1100 1098 0.002

1200 1182.3 11.2 1173 1182 0.015

1300 1296.5 8.6 1298 1296 0.003

1400 1387.8 13.4 1384 1387 0.009

1500 1492.3 12.6 1489 1491 0.005
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Table 3. Parameters of color and depth camera calibration.

Type Parameters
Color camera Depth camera

Mean Standard Deviation Mean Standard Deviation

Internal 

orientation

Focal length (x) 1047.92 4.54 363.90 1.52

Focal length (y) 1048.46 4.73 365.60 1.83

Principal point (x) 981.16 3.48 252.70 1.78

Principal point (y) 538.19 2.96 203.10 2.12

Distortion

k1 0.01053 0.00835 0.08533 0.01437

k2 0.05968 0.03519 -0.18742 0.06331

k3 0.00000 0.00000 0.00000 0.00000

p1 0.00255 0.00099 -0.00162 0.00242

p2 0.00535 0.00127 -0.00268 0.00198

Table 4. Corresponding points in color and depth images from elevated test-field.

#
Color points Depth points

#
Color points Depth points

X Y X y X Y x y

1 723.56 326.54 163.85 133.02 11 1488.77 471.00 430.45 184.91

2 873.45 323.63 216.38 132.37 12 723.76 637.35 162.96 241.82

3 1027.40 324.36 270.09 132.96 13 882.22 631.48 218.73 239.80

4 1179.36 321.14 323.07 132.01 14 1038.98 636.86 272.80 241.95

5 1330.49 319.48 375.90 131.76 15 1196.88 630.85 327.95 240.15

6 723.53 477.71 163.38 185.93 16 1343.97 628.39 379.96 239.56

7 880.09 475.45 218.49 185.38 17 725.96 789.17 163.31 295.01

8 1029.86 472.99 269.94 184.84 18 883.28 785.32 218.68 293.76

9 1184.00 472.94 324.37 185.06 19 1042.85 798.44 273.74 298.53

10 1335.87 474.41 377.55 185.81 20 1200.93 792.47 329.05 296.71

Table 5. Calculated Conformal parameters.

a b C d

0.0153 2.8639 252.8349 -52.1486
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Table 6. Key points of samples resulted from SIFT and effect of RANSAC.

image # SIFT key points SIFT corresponding      
key points

corresponding key   
points after running 

RANSAC
1 22479

178 812 30679
2 30679

93 653 29365
1,2 43863

24485 244822,3 57900

4 33451
688 4195 30359

5 30359
108 586 29847

4,5 53139
28017 280145,6 55257

1,2,3 65375
1746 3774,5,6 59415

Table 7. Calculated affine parameters for some sample images.

image #
Affine Geometrical Transformation

A b C d e f
1

0.9877 -0.0348 -10.0356 0.007321 0.978038 -943.241
2
2

0.9916 -0.0012 75.9639 -0.01649 0.970309 981.246
3

1,2
1.0000 3.98E-07 19.9993 -6.6E-07 1.0000 936.0015

2,3

4
0.9886 0.0448 -83.6901 -0.03931 0.996217 -824.105

5
5

0.9604 0.0047 107.0955 -0.00636 0.981134 926.3332
6

 4,5
1.0000 -5.5E-07 63.0000 3.09E-08 1 891.0011

5,6
1,2,3 

0.9918 -0.0429 -924.5230 0.025782 1.04447 -79.6267
4,5,6

SUBMITTED:   02/06/2017
ACCEPTED  :  08/01/2018
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جمع البيانات لإعادة بناء حجارة الر�سيف من الموازييك بوا�سطة نهج منخف�ض التكلفة

4
، تي. األبورفارد

3
، ك. اأوفت�سي

2
، اأ. غولرو

1
ف. خليفة

)1( ق�سم الهند�سة المدنية والبيئية، جامعة �سيرجان للتكنولوجيا، كرمان، اإيران

)2( ق�سم الهند�سة المدنية والبيئية، جامعة اأمير كابير للتكنولوجيا، طهران، اإيران

)3( ق�سم الهند�سة المدنية والبيئية، جامعة اأمير كابير للتكنولوجيا، طهران، اإيران

)4( ق�سم هند�سة الجيوماتك�س، جامعة طهران، طهران، اإيران

الخـلا�سة

جمع البيانات هو اأحد الخطوات الأكثر اأهمية والأعلى تكلفة في اأنظمة اإدارة عمليات الر�سف. فقد تم ا�ستبدال الطرق التقليدية على نطاق وا�سع 

وذلك با�ستخدام مركبات لجمع البيانات اتوماتيكياً ب�سبب مزاياها المتعددة، مثل: ال�سلامة والدقة والن�سباط وتوحيد المقايي�س وقابلية التكرار. ومع 

ذلك، فاإن هذه المركبات باهظة التكاليف نظراً لوجود العديد من اأجهزة ال�ست�سعار عالية ال�سعر والتي تكون مُثبتة على متن المركبة مما يجعلها غير 

عملية من الناحية المالية. اإن الهدف الرئي�سي من هذا البحث هو اقتراح نهج منخف�س التكاليف لجمع البيانات المُ�ستخدمة في اإعادة بناء نموذج ثلاثي 

الأبعاد ل�سطح الر�سيف والذي يمكن ا�ستخدامه لتقييم حالته. ولهذا الغر�س، تم ا�ستخدام جهاز ا�ست�سعار منخف�س التكلفة ي�سمى Kinect V2 وهو 

يحتوي على الكاميرات وجهاز عر�س يعمل بالأ�سعة تحت الحمراء للتقاط بيانات العمق. وبعد معايرة جهاز ال�ست�سعار والبيانات الملُتقطة، تم تجميع 

ال�سور الملونة معاً. وتمت اإ�سافة بيانات العمق اإلى ال�سور الملُتقطة؛ ومن ثم تم بناء نموذج ثلاثي الأبعاد للر�سيف. وهذا النهج يُحدث فرقاً كبيراً من 

ناحية التكلفة الإجمالية لجمع البيانات عن عيوب الأر�سفة والتي تتميز ب�سكل اأ�سا�سي بالرفع، مثل: الخ�سونة وت�سوه الطبقات.


