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ABSTRACT
Forced vibration analysis of cantilever rods is presented that have material properties and cross-

section areas that arbitrarily vary in the axial direction, solved using Laplace transform in time 
domain and complementary functions method (CFM) in the spatial domain. Under the Laplace 
transformation, the partial differential equation is transformed into time-independent boundary 
value problem in the axial direction, which is solved by CFM. Then, inverse transform is taken 
by modified Durbin’s method into the time domain. In the end, the non-dimensional displacement 
results are compared with both benchmark and finite element method (FEM) solutions available in 
the literature. In addition to satisfying a fair amount of accuracy with small computational costs, 
the approach presented in this study is well-structured, simple, and efficient. 

Keywords: Inhomogeneous; non-uniform; complementary functions method; Laplace 
transform.

INTRODUCTION
Current engineering designs frequently involve situations where inhomogeneous materials are 

used intentionally to attain the required structural performance. The analysis of inhomogeneous 
structural members (rods, beams, shafts, pipes, tubes, etc.) is quite important, especially in 
engineering design. The potential uses of these members in engineering applications include 
aerospace structures, engine parts, fusion energy devices, and other engineering structures. The 
use of inhomogeneous members can help the designer reduce the weight and stress intensity 
factors; improve residual stress distribution, high temperature withstanding ability, and strength 
and stability of structures. Their material properties can be designed as to improve the behaviour 
of structures in which they are embedded. As the amount of these structures in different application 
increases, different techniques and methodologies need to be employed in terms of characterization 
to design and analyse the structural components made of inhomogeneous members. 

Different studies have been carried out by researchers on the static and dynamic behaviour 
of inhomogeneous structural members such as beams (Tong et al., 1995; Elishakof & Candan, 
2001; Avcar, 2015 -2016; Yang et al., 2008; Shahba et al., 2011;  Huang & Luo, 2011; Huang et 
al., 2013), annular circular plates or disks (Horgan, 1999; Efraim & Eisenberger, 2007), axial bars 
(Maalawi, 2011; Celebi et al., 2012; Akgoz & Civalek, 2013; Hong et al., 2014; Hong & Lee, 
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2015), shells (Mecitoglu, 1996), and spheres (Heyliger & Jilani, 1992). Inhomogeneity in rods 
can arise due to variation in cross-sectional area or in density (and thus Young’s modulus). Abrate 
(1995) found exact solutions for rods and beams with polynomial cross-sections and inertia. Kumar 
et al. (1997) studied the longitudinal displacement of several rods with variable cross-sections 
and figured out the analytical solutions of the longitudinal displacements. Li (2000) carried out a 
functional transformation of the governing differential equation and then obtained exact solutions 
for certain functional forms of an involved parameter. Yardimoglu and Aydin (2011) obtained 
the longitudinal natural vibration frequencies of rods with variable cross-sections by using the 
transformation method. Celebi et al. (2011) found exact solutions for forced vibration of non-
uniform rods by using Laplace transformation method. Shokrollahi et al. (2014) studied the non-
dimensional natural frequencies of rods with various area cross-sections by using discrete singular 
convolution method. Conway et al. (1964) obtained an exact solution for a conical beam in terms 
of Bessel functions. Candan and Elishakoff (2001) constructed several closed-form solutions for 
inhomogeneous rods with continuously variable moduli of elasticity. Elishakoff and Perez (2006) 
obtained closed form solution for the free vibration of inhomogeneous bar with a tip mass. Nachum 
and Altus (2007) studied natural frequencies and mode shapes of nonhomogeneous rods and beams 
based on the functional perturbation method. Calio and Elishakoff (2008) investigated a special 
class of closed-form solutions for inhomogeneous rod. Celebi et al. (2012) analysed the axial 
vibration of inhomogeneous rod modelled as a continuous system. Static and dynamics analyses 
of the inhomogeneous structures are obtained via different solution methods, including analytical 
methods (Menaa et al., 2012; Celebi & Tutuncu, 2014; Huang et al., 2013), modal analysis 
method (Murin et al., 2010 -2013), power series expansion methods (Calim, 2009; Horgan, 2007; 
Maalawi, 2011), differential quadrature method (DQM) (Xiang & Yang, 2008),  dynamic stiffness 
method (Efraim & Eisenberger, 2007), numerical methods such as finite element method (FEM) 
(Chakraborty et al., 2003; Piovan & Sampaio, 2008; Alshorbagy et al., 2011; Shahba et al., 2011), 
and complementary functions method  (Tutuncu & Temel, 2009; Celebi et al., 2016 -2017).    

The objective of this paper is to present a unified approach for analysing forced vibration of 
inhomogeneous rods. The material properties and cross-sectional areas of the rods are varying 
arbitrarily in the axial direction, and time-dependent forcing functions are applied at the free end of 
the rod.  The inhomogeneity properties including variable sectional area, modulus of elasticity, and 
mass density often produce an irregular and variable coefficient governing differential equation. 
Analytical solutions of such equations may be possible by superposition methods with combination 
of power series methods, but it is not practical and also very specific to elementary geometries, 
material properties, and rather particular types of loadings. Therefore, at this stage, numerical 
solution is becoming essential. In the numeric analysis of the present study, Laplace transform and 
complementary functions method (CFM) are combined in order to solve the partial differential 
equations with irregular variable coefficients.  Under the Laplace transformation, the partial 
differential equation is transformed into time-independent boundary-value problem, which can be 
solved by any standard method in the literature. The system of the initial-value problem is solved 
by the fifth-order Runge-Kutta method. Inverse transformation of the results into the time domain 
is taken by modified Durbin's method. The theoretical background for the method is available in 
the literature (Tutuncu & Temel, 2009; Celebi et al., 2016- 2017). A detailed form of solution is first 
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offered for an inhomogeneous rod with uniform cross-section and compared to reference data that 
is available in the literature (Celebi et al., 2012) to validate the numerical results. After validating 
the proposed approach, the analyses of inhomogeneous rods with non-uniform cross-section are 
studied in detail. The efficiency of the present method is demonstrated by comparing the results 
with Newmark integration method. Specifically, the new attributes of this method are as follows: 
(1) the forced vibration response is directly obtained; (2) performing forced vibration analysis and 
determination of natural frequencies and mode shapes are not needed; (3) the solution procedure 
can be applied to any choice of material and cross-sectional area model. The solution procedure is 
well structured, simple, and efficient. 

GOVERNING EQUATION
Figure 1 shows the geometry of the inhomogeneous rod with the non-uniform cross-section 

considered in this study. 

Figure 1. Inhomogeneous rod with non-uniform cross-section.

The partial differential equation that governs the axial dynamic behaviour of a vibrating rod is 
(Clough & Penzien, 1993)

)1(

Usually, the external axial loading consists only of end loads, in which case the right hand side of the 
Eq. (1) would be zero. However, when solving Eq. (1), the boundary conditions imposed at x = 0 and 
x = L  must be satisfied. Eq. (1) can be written as

)2(

where (x) denotes the axial coordinate, u(x,t)  axial displacement at any position x and time t, E(x)

modulus of elasticity, p(x) mass density, and A(x) cross-sectional area.

By using the dimensionless variables

)3(
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renders Eq. (2) in the form

)4(

where c2  is the speed of longitudinal waves.

The rod is fixed at  . At the right end  , the dynamic axial force applied to the rod, 
the initial and boundary conditions are

)5(

 

)6(

DEFINITION OF THE ROD MODEL 
To ascertain the effect of the inhomogeneity, two different material models are 

considered with the following physical parameter distribution: (a) power law material 
model-  and (b) exponential law material model-

 .  In addition to this, the cross-section is assumed to vary along 
the non-dimensional axial coordinate η in the forms  , 

 are real constants and (a) is an inhomogeneity parameter.

In this study, both geometric and physical parameters are varying together. Differential equation 
(4) will be solved for several cases as follows: 

Analytical solution can only be obtained for case 5 -6 among the above cases; the other 
cases have no analytical results. A detailed analysis for one of the cases is presented below, and 
subsequently, the results for other cases, which have the same solution method, are provided. 

SOLUTION FOR SINUSOIDAL CROSS-SECTION ROD WITH
POLYNOMIAL VARYING DENSITY AND MODULUS OF ELASTICITY 

This case presents an example of an inhomogeneous rod with non-uniform cross-section 
in which all geometric and physical parameters vary with non-dimensional parameter 

  Substituting chosen parameters 
into Eqs. (4- 6), right after taking the Laplace transform, yields
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)7(

)8(

homogeneous boundary value problem, where  with s being the complex Laplace 
parameter.

At this stage, a general closed-form solution of Eq. (7) is not practical. So, solutions of Eq. 
(7) in the Laplace domain are carried out by CFM, which is based on the transformation of the 
solutions of second-order boundary value problems to a system of initial value problems. The 
solution of Eq. (7) is

)9(

where yi is the linearly independent homogeneous solution, bi is the constant to be determined with 
boundary conditions (8).

)10(

The above system of equations could be solved numerically by CFM. The unreal initial conditions 
for this system of equations are selected arbitrarily, but linear independent, in order to guarantee 
the linear independence of the solution

)11(

where  are arbitrary constants. This system of initial value problem is solved by the fifth-order 
Runge-Kutta method (RK5). The solutions are performed at only 21 collocation points through the 
length of 20 intervals in the interval  .

After having determined the homogeneous solutions  and their derivative  , by imposing 
these solutions into Eq. (8), one can now find two equations for constants . These equations, in a 
matrix form, can be written as 

)12(

The non-dimensional displacement values  in the time domain can be obtained 
numerically from the inverse Laplace transform. For this purpose, the modified Durbin's inverse 
Laplace transform technique based on fast Fourier transform (FFT) is used. Details of the technique 
are given in Appendix A.  
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RESULTS
In this study, a general objective computer program is coded in MATHEMATICA to 

analyse the forced vibration of inhomogeneous rods with non-uniform cross-section (Abell & 
Braselton, 2004). In the solution procedure of the initial value problem based on CFM, fifth-
order Runge-Kutta algorithm is used. Inverse transformation into the time domain is taken by the 
modified Durbin’s method. Three types of dynamic axial end force will be used in the analysis: 

 for γ=0.6. The material and geometrical 
models for different cases are given in the definition of the rod section. The inhomogeneity 
parameter “a” is taken as 0, 1, 2 for all cases considered. The results for “a=0” correspond to the 
uniform cross-section with constant material properties.

The efficacy and adequacy of the present method are first compared to the analytical 
results presented for inhomogeneous rods with uniform cross-section (Celebi et al., 2012). The 
comparison will be illustrated in Tables 1–6. It can be noted from the tables that the CFM results are 
complementary to the analytical solutions in Celebi et al. (2012) than ANSYS results. Examining 
these results reveals the great accuracy and efficiency achieved by CFM; calculations performed at 
only 21 points through the length yielded exact numerical results.
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Having testing the validity of the present method, the forced vibration analysis of the 
inhomogeneous rod with non-uniform cross-section is now presented. Figures 2–5 show the non-
dimensional end displacements obtained using CFM. 

Figure 2. Non-dimensional end displacements for case 1 under dynamic loadings.

The numerical CFM results are compared with the results obtained by a commercial FEM 
package, ANSYS. The Newmark integration method was preferred in the analysis to solve the 
transient load problem. The element type, Beam-188, is used to compute the non-dimensional end 
displacements with ANSYS. Element section properties and material properties were changed with 
the axial direction by use of ANSYS parametric design language (APDL). The same geometrical and 
physical parameters given in the definition of the bar section are applied for computation. The FEM 
model of ANSYS has 1000 elements of equal length in the axial direction. A good agreement between 
the results obtained using CFM and those given by the FEM has been observed from the figures.
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Figure 3. Non-dimensional end displacements for case 2 under dynamic loadings.

As shown in Fig. 2–4 , the displacement amplitude decreases with increasing inhomogeneity 
parameter  for case 1, case 2, and case 3, whereas for case 4, the displacement amplitude increases 
with increasing inhomogeneity parameter . As can be seen from Fig. 5, the inhomogeneity parameter  
is more effective for case 4. The greater displacement amplitude differences between inhomogeneity 
parameters are obtained for this case. The oscillations of case 2 and case 3 are observed to be similar 
for all loading types. According to this, we can say that the interchange of the expressions defining 
the material and geometrical properties given in cases yields the same result. 

Figure 4. Non-dimensional end displacements for case 3 under dynamic loadings.
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CONCLUSION
In this work, forced vibration analysis of the inhomogeneous rod with non-uniform cross-

section is presented. The material properties and cross-sectional area of the rods are varying 
continuously in the axial direction. Under the Laplace transformation, the partial differential 
equation is transformed into time-independent boundary-value problem in spatial domain, which 
is solved by CFM. The CFM method converts the problem to a system of initial-value problem, 
which can be solved by any standard methods in the literature. The system of the initial value 
problem is solved by the fifth-order Runge-Kutta method. Inverse transformation of the results into 
the time is taken by the modified Durbin's method. From the results presented above, the following 
conclusions are reached:

Figure 5.  Non-dimensional end displacements for case 4 under dynamic loadings.

• The solution procedure can be applied to any choice of material and cross-sectional area model. 
The solution procedure, besides satisfying accuracy with small computational costs, is well 
structured, simple, and efficient. 

• With this combined approach, the forced vibration response is directly obtained. Determination 
of natural frequencies and mode shapes is not necessary.

• The inhomogeneity parameter is a useful parameter from the design perspective and can be 
tailored for specific applications so that the displacement amplitude can be controlled.

• The interchange of the expressions defining the material and geometrical properties given in 
cases yields the same result. 

• Furthermore, studies demonstrated that, compared with other numerical methods like FEM, 
CFM can find highly precise numerical results in less time with a little cost of calculation.
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Appendix A. Modified Durbin's inverse Laplace transform method
A numerical inverse Laplace transform technique is necessary to obtain the values in the 

time domain. For this purpose, Durbin's inverse Laplace transform technique based on the fast 
Fourier transform (FFT) is used by Durbin. Durbin's formulation for inverse Laplace transform is 
summarized as follows:

)A1(

in which   where  is the kth Laplace transform parameter. T is the solution 

interval and  is the time increment. The selection of constant  in numerical inverse Laplace 
transforms is explained in Durbin (1974)It is implied that if the value of  is chosen in the range 
5–10, good results are obtained. Therefore, for the numerical examples presented in this paper, the 
value of  is generally taken as "6". Finally, results can be modified by multiplying each term of 
Lanczos  factors to obtain better results in the Laplace domain as suggested by Narayanan  (1979).

)A2(
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تحليل الاهتزاز الق�ضري للق�ضبان

غير المتجان�ضة مع مقطع عر�ضي غير منتظم
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الخـلا�ضة

تم حل م�ضاألة تحليل �لاهتز�ز �لق�سري لق�ضبان �لكابولي ذو �لخ�ضائ�ص �لمادية ومناطق �لمقطع �لعر�ضي و�لتي تختلف ع�ضو�ئياً 

في �لاتجاه �لمحوري با�ضتخد�م تحويل لابلا�ص )Laplace( في �لمجال �لزمني وطريقة �لدو�ل �لتكميلية )CFM( في �لمجال 

�لمكاني. فوفقاً لتحويل لابلا�ص، تم تحويل �لمعادلة �لتفا�ضلية �لجزئية �إلى م�ضاألة �لقيمة �لحدية �لزمن - �لم�ضتقل في �تجاه محوري 

وتم حلها بو��ضطة CFM. بعد ذلك، تم �إجر�ء �لتحويل �لمعكو�ص با�ضتخد�م طريقة Durbin �لمعُدلة في �لنطاق �لزمني. وفي 

�لنهاية، تمت مقارنة نتائج �لاإز�حة عديمة �لاأبعاد مع نتائج طريقة FEM �لمن�ضورة في �لاأبحاث. �إن �لنهج �لمقدم في هذه �لدر��ضة 

منظم ب�ضكل جيد وب�ضيط وفعال بالاإ�ضافة �إلى �أنه يوفر قدر كبير من �لدقة وتكاليف ح�ضابية قليلة.
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