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ABSTRACT
This paper investigates the network location problem for multiple-server facilities,which are 

subject to congestion. A number of facilities are to be selected among several candidate locations 
in order to satisfy customers’ demands. For each network edge, the corresponding customers are 
uniformly distributed along the edge, and their demands are generated according to the Poisson 
process. Furthermore, the number of servers in each established facility is considered as a decision 
variable, and the service time for each server follows an exponential distribution. Using queuing 
system analysis, a mathematical model is developed to minimize the customers’ aggregate expected 
traveling times and the aggregate expected waiting times. Since network location problems are NP-
hard, three metaheuristic algorithms including genetic algorithm, memetic algorithm, and simulated 
annealing are then investigated and developed to solve the proposed problem. The resultsof 
implementing the algorithms on some test problems demonstrate that the proposed memetic 
algorithm outperforms theother two algorithms in terms of objective values.

Keywords: Logistics, facility location, distributed demand, queuing theory, metaheuristics.

INTRODUCTION
Since the seventeenth century, facility location problem (FLP) has been studied by a myriad 

number of researchers. Nowadays, it is one of the most prominent branches of operation research, 
which is applied in different fields such as determining the location of warehouses, hazardous 
materials sites, automated teller machines (ATMs), coastal search, and rescue stations. Also, the 
application of FLP in the emergency service location has become rampant recently(Moeini et al., 
2015). As reviewed byKlose & Drexl (2005),Hale & Moberg (2003), andBoloori Arabani & Farahani 
(2012), FLP could be subdivided into various categories. 

FLP can be deterministic or stochastic. In stochastic problems, as opposed to deterministic ones, 
some parameters like demand or cost are uncertain(Bieniek 2015; Rahmaniani et al. 2013);for more 
details, refer toSnyder (2006). For the first time, Larson (1974 and 1975)challenged the deterministic 
essence of real-life FLPs by presenting the idea of congestion. In congested facility location problem 
(CFLP), customers need to wait in a queue to receive the service. Boffey et al. (2007) scrutinized 
different versions of CFLPs.

Based on the objective function, location problems are classified into three categories: center, 
covering, and median problems.
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The objective function of center problems minimizes the maximum distance or service times 
(Aboolian et al., 2009). These problems are generally applied in emergency location problems 
such as locating ambulance stations and fire stations.Since center problems are NP-hard(Garey & 
Johnson, 1979; Kariv & Hakimi, 1979), many metaheuristic algorithms have been applied in order 
to solve these problems.  

The objective function of covering models is to maximize the number of covered clients. 
Using the M/G/1 queuing systems,Hamaguchi & Nakadeh (2010) formulated a model in order 
to maximize the total number of covered demands. By considering the budget constraint, Hu et 
al. (2013)presented a model according to M/M/C queuing system with the objective function 
of maximizing the covered demands.Farahani et al. (2012)compiled different versions of 
covering problems. 

Median problems refer to those problems wherein the objective function is to minimize the 
total traveling or waiting times. The single-server (M/M/1) model proposed by Wang et al. (2002)
and the multiple-server (M/M/C) model presented by Berman & Drezner(2007)are some of the 
examples of median CFLPs. The application of bi-objective models is a sought approach in median 
CFLPs(Marianov & Serra, 2011).Some of these bi-objective models consider customer and server 
aspects both simultaneously(Pasandideh & Niaki, 2012). Some studies have expanded these bi-
objective models by adding one extra objective function to account for pecuniary aspects(Pasandideh 
et al., 2013). Kariv & Hakimi(1979)proved that the median problem is NP-hard on a general 
graph. Since the exact methods may not be able to solve the median problems, the application 
of metaheuristic algorithmsbecomes inevitable. Differentmetaheuristic algorithms such as genetic 
algorithm(Alp et al., 2003; Pasandideh et al., 2013), simulated annealing (Berman & Drezner, 
2007), Tabu search(Brimberg & Drezner, 2013), and variable neighborhood search(Rahmaniani 
& Ghaderi, 2015)have been developed for solving the median problems. Mladenović et al. (2007)
reviewed many metaheuristics and exact methods to solve this problem. 

Flow capturing location problems (FCLPs) are another type of problems thatare similar to 
FLPs. In contrast withstudies mentioned before in which it is considered that the customers are 
located at the network nodes, a network of paths each directed towards a specific flow is considered 
in FCLPs(Hodgson, 1990). Flow refueling location problems (FRLP) could be considered as one 
of the branches of FCLP. Kuby & Lim (2007)andKuby et al. (2009) applied FRLP models in order 
to find the best location of fuel stations.

Inspired by FCLPs, Arkat & Jafari (2016)proposed a more realistic p-median facility location 
problem according to M/M/1 queuing system, in which customers are uniformly distributed along 
the network edges. Since, in the majority of real-life problems, more than one server is required 
to satisfy customer demands at each facility, this study expands the model proposed by Arkat & 
Jafari (2016)by incorporating the M/M/C queuing framework in order to reflect a more realistic 
image of the problem. This expansion transforms the developed mixed integer linear model to 
a mixed integer nonlinear model, which intensely heightens the complexity of the problem and 
solution methods. After determining the location of open facilities, a predefined number of servers 
are distributed among the open facilities in order to satisfy customer demands. The objective 
function minimizes the aggregate expected transportation time between the customers and the 
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open facilities, and the aggregate waiting times for the customers in the system. Applications of 
such a model include the location of bank branches, post offices, and healthcare centers, where the 
number of staff or tellersat each location should be determined. 

The paper is organized as follows. In Section 2, the problem is described, and a mathematical 
model is presented. Further, in order to check the model validation, a small problem is solved. In 
Section 3, the characteristics of three applied metaheuristic algorithms including GA, MA, and 
combined SA are described. In order to examine the applicability of solution algorithms, some 
numerical examples are generated in Section 4.In Section 5, the numerical results are reported, and 
the conclusion is drawn in Section 6. 

PROBLEM DEFINITION AND ASSUMPTIONS

The problem studied in this paper is a facility location problem for immobile facilities where 
several servers are settled to serve the customers. In this paper, it is assumed that demands are 
generated along the network edges with pre-defined geographical positions. The demands are 
uniformly distributed along the edges, and the time interval between any two consecutive demands 
follows an exponential distribution with a known parameter. Customers who arrive at a busy server 
will wait in a queue with innings system. The service time of each server follows an exponential 
distribution with a defined parameter. In this problem, homological(1) demands have different 
distances to their closest open facility. Therefore, in the queue, based on traveling distance, the 
demands that are generated sooner may stand after the demandsthat are generated later. As a result, 
the time interval between demand generations follows a different distribution with the service time 
interval, and this difference makes the related model more complex. This problem is a discrete 
location problem, which means that there are a set of potential locations to set up facilities and 
from them, a certain number is selected to cover customers’ demands and minimize the aggregate 
customers’ expectedtraveling and waiting times. The total number of available servers, which are 
distributed among the open facilities, is known in advance. Due to the fact that the distance between 
any demand point and the end points ofthe corresponding edge follows the uniform distribution, 
customer’s movement along each network edge could be assumed asM/U/∞ queuing system. Since 
the output process of M/G/∞ is Poisson (Gross et al., 2008),and these outputs enter the facilities in 
order to receive the service, the queuing system for each facility will be according to M/M/C. The 
remaining assumptions are summarized as follows:

  The customers’ moving speed along all the network edges is identical.

  Potential locations for setting up the facilities are known.

  The servicing system of queue follows FIFO.

  In order to receive the service, each customer goes to the closest open facility.

  Based on the budget constraint, the number of open facilities is known in advance.

  A customer, who arrivesat a facility thatis too crowded, could not cancel receiving the service or 
skip the facility to go to another one.

(1) Customers who are settled on the same edge are called homological customers.
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For more clarification, Fig. 1 presents the problem schematically. 

Fig. 1.  facility location problem scheme.

Model formulation
     In order to develop the mathematical model, the sets, parameters, and decision variables are 

defined as follows:

Sets:
     network comprised of the set of nodes (  ) and the set of edges (  )

    The set of network nodes (  )

     : The set of network edges 

    The set of candidate locations for establishing facilities 

Parameters:

    The length of edge  

   The rate of demand occurrence for edge 

    The minimum distance between node  and facility  obtained from the Dijkstra algorithm 

Decision variables:

    Number of servers at facility  

    The expected waiting time at facility 

    

   

    The demand entrance rate at facility 

    The probability that opened facility  contains no customers (idle probability)

    The distance between node  and decomposing point of edge  if nodes  
and  are, respectively, assigned to open facilities  and 
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Scalars:

    Number of open facilities

    A large positive value whose lower bound is the biggest amount of  

    A large positive value whose lower bound is 

     The total number of available servers

    The maximum time that customer could wait in the system

    Common service rate of each server

    An infinitesimal positive number

As shown in Fig. 2, suppose that  and  are the closest opened facilities to the nodes  and , 
respectively  The customers who are located between node and decomposing 
point of the edge  are assigned to facility. The remaining customers of edge  are 
assigned to facility .

Fig. 2. A network edge.

According to the assumptions of Fig. 2, the edge  is decomposed as

                                                                                               (1)

                                             (2)

Lemma 1) If facilities  and are the closest opened facilities to the nodes and , respectively, 
then 

Proof : Suppose that 

                                   (3)

It means that, instead of facility , now  is the closest facility to the node and itis in contradiction 
with our assumptions. The same result could be obtained for the case in which 

Since customers’ moving speed along all of the network edges is identical, instead of time needed 
to traverse the edges, the length of edges is used. The number of generated demands along each 
network edge is related to the length of the edge, sofor each edge, the aggregate expected customers’ 
traveling time for reaching one of the end points of the edges could be calculated as

                                                                                   (4)
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By applying these assumptions, the proposed mathematical model is as follows:

                  (5)

subject to

                                                                                                                                   (6)

                                                                             (7)

  
                                                                    (8)

                                          (9)

                                (10)

                                                           (11)

                                                                           (12)

                                                                     (13)

                                                                     (14)

                                                   (15)

                                                         (16)
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                                                                                 (17)

                                                           (18)

                   (19)

InEq. (5), the customers’ aggregate expected traveling timesand waiting timesare minimized. 
Constraint (6) ensures that, among all candidates, plocationsare selected to establish the facilities. 
Constraint (7) guarantees that a unique facility is assigned to each node. Constraint (8) shows 
that no customer is assigned to closed facilities. Constraint (9) assures that each customer will 
be assigned to the closest open facility. Constraint (10) calculates the decomposing point for 
each network edge. Constraint (11) calculates the demand entrance rate for each open facility. 
Constraint (12) ensures that the total number of assigned servers is. Constraint (13) guarantees that 
servers are not assigned to closed facilities. Constraint (14) assures that the queuing system will 
achieve a steady state mode. According to the characteristics of M/M/C queuing systems(Gross 
et al., 2008), constraints (15) and (16) calculate the idle probabilities and expected waiting times 
at the open facilities.Constraint (17) considers an upper bound for customers’ expected waiting 
time at each facility. Constraints (18) and (19) preserve the binary and nonnegative restrictions on 
decision variables.

An illustrative example

In order to examine the model, according to Fig. 3, a small network consisting of7 nodes, 
11edges, and 4 candidate locations is presented. The length of each edge is written above it,and 
the numbers written in parentheses are related tothe correspondingrate of demand generation. It 
is assumed thatthe common service rate is 8 customers per hour, a totalof15 servers are available, 
maximum allowed waiting time is 25 minutes, and two facilities could be opened. This problem 
has been coded in general algebraic modeling system (GAMS) and solved by the Bonmin solver. 
According to the obtained results, 9 and 6 servers should be assigned to facilities established at 
nodes 3 and 4, respectively.

Fig. 3. A small network.
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SOLUTION METHODS

As mentioned earlier, the median problems on a general graph are NP-hard problems. Further, a 
constrained non-linear mixed integer programming model, such as the proposed herein,is considered 
to be NP-hard (Pasandideh et al., 2013; Hajipour et al., 2014). Due to these reasons, finding the 
exact solution for the proposed model is hard (if not impossible). Therefore, in order to solve the 
problem, in addition to coding the model in GAMS for finding the best solution, three metaheuristic 
algorithms are developed. The developed algorithms are the genetic algorithm (GA), the memetic 
algorithm (MA), and the combined simulated annealing algorithm (SA). While describing the applied 
algorithms, it should be noted that, due to some technical restrictions, the proposed model could 
not be solved by GAMS in its basic form. Coding summation operator with a variable upper bound 
as used in constraint (15) is not allowed in GAMS. Also, the factorial function with variable inputs 
(constraints (15) and (16)) could not be coded in GAMS. In order to get rid of these restrictions, after 
defining a new binary variable  the following constraint manipulation is used.

Constraints (12), (13), (14), (15), and (16) are replaced with the following constraints, 
respectively.

                                (20)

                               (21)

                                (22)

   

                                (23)

                               (24)
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 Genetic algorithm (GA)

Genetic algorithms, which are derived from observed processes in natural evolution, were first 
introduced by John Holland in the 1970s. GA is a search technique thatstarts with a population 
of random solutions(Khodaparasti et al., 2016). Each solution is called a chromosome. Through 
successive iterations, called generations, the chromosomes are evolved and the algorithm is 
converged to the best chromosome (see Eiben & Smith (2003)for more information). During each 
generation, the genetic operators such as selection, crossover, and mutation are implemented in 
order to generate new chromosomes.The main steps of GA applied in this paper are explained in 
the next subsections.

Step 1(Initialization): In this step, the parameters of GA are initialized. The parameters applied 
here are population size (Npop), maximum number of iterations (MaxIt), crossover probability 
(Pc), and mutation probability (Pm).

Step 2 (Representation): Encoding is one of the most important steps in designing GA 
algorithms to create an appropriate definition of solutions. In this paper, each solution 
(chromosome) is shown by a matrix with two rows. The length of each row is equal to the 
number of open facilities (p), which means that each row has exactly p genes. The allele of 
each gene in the first row represents the index of locations chosen for establishing the facilities. 
In the second row, the allele of each gene determines the number of servers assigned to the 
corresponding facility. Fig. 4 is an illustration of a chromosome for a problem with 5 facilities 
and 10 servers. According to the first row of Fig. 4, facilities are located in locations 3, 9, 7, 
4, and 12. Furthermore, according to the second row, there are 2, 1, 3, 2, and 2 servers in the 
aforementioned facilities, respectively.

Fig.4.Chromosome encoding.

Step 3 (Initial population): The initial population is randomly generated. In order to generate 
each random solution, the first row of the chromosome is randomly filled by non-repetitive indices 
of candidate locations. In order to fill the second row, firstly one server is assigned to each facility, 
and then the remaining servers are randomly distributed among the facilities.

     Step 4 (Fitness evaluation): The fitness value of each chromosome is computed by Eq. (5). 
Since the considered structure for chromosomes does not guarantee the satisfaction of constraints 
(14) and (17), some generated chromosomes could be infeasible. One of the most prominent 
ways to handle the infeasible solutions is to apply penalty functions (Yeniay 2005). In the case of 
infeasibility, the penalty function is added to the fitness value of the solution. If constraint (14) is 
violated, the applied penalty function is as follows(Hajipour et al. 2014):
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                                                                                   (25)

The penalty function, which is considered for violation of constraint (17), is defined as

                                                                                                              (26)

In above equations, α is a big positive number. 

Step 5 (Parent selection): The total number of parental chromosomes for carrying out the 
crossover operator is calculated by . The selection process among the parental 
chromosomes is based on the roulette wheel procedure. In this method, the parents with better 
fitness values have a greater chance of being selected. In other words, according to the fitness 
value, a cumulative probability, which shows the chance of each parent for being selected, is 
calculated (seeKumar (2012) for more information).

Step 6 (The crossover operator): In this section according to one-point-cut crossover operator, 
two offspring chromosomes are reproduced by mating two parental chromosomes. At the beginning, 
a crossover point is selected randomly along the length of the mating chromosomes. This point 
breaks each parent chromosome into two segments. Up to the crossover point, the first segmentgenes 
of the first parent chromosome are copied to the first offspring. The remaining genes of the first 
offspring are taken from the second segment of the second parent chromosome. If the first row alleles 
of the second parent are present in the offspring chromosome, the first segment genes are copied. 
In a similar process, the second offspring is produced by exchanging the role of the first and second 
parents.Fig. 5 shows a graphical representation of the crossover operation. 

Fig. 5. An example of crossover operation.

Step 7 (Repairing operator): Since, in the crossover operation, each offspring inherits the 
servers directly from its parents, occasionally constraint (12) can be violated. While constraint (12) 
is satisfied, the following process is repeated. If the total number of assigned servers (summation 
of the second-row alleles) is greater than the total number of available servers (, in each repetition, 
a second-row gene containing more than one server is randomly selected and its allele is decreased 
by one. Otherwise, in each repetition, the number of assigned servers of a randomly selected 
second-row gene is increased by one.
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Step 8 (Mutation operator): The mutation operator is applied to the second row of each 
chromosome. According to the mutation probability (Pm), two randomly selected second-row 
alleles are swapped with each other. Fig. 6 represents the mutation operator.

Fig. 6. An example of mutation operation.

Step 9 (Replacement and stopping criteria): In each iteration, according to the steady state strategy 
(Lozano et al., 2008), the best offspring generated through crossover and mutation operations is 
compared with the worst individual of the current population. If the fitness value of the offspring is 
better, it replaces it. When the algorithm reaches a predetermined number of iterations, the GA is 
stopped.Algorithm 1 shows the pseudo code of the proposed genetic algorithm.

Memetic algorithm (MA)

Similar to GA, MA is also a population-based metaheuristic search method. MA combines the 
biological evolution of GA with the individual learning procedures in order to mimic the cultural 
evolution (Tavakkoli-Moghaddam et al., 2009). These individual learning procedures could be 
implemented by local search techniques (Moscato & Norman, 1992). Therefore, a genetic local 
search algorithm could be considered as an MA(Moré et al., 1981).

The MA proposed in this paper differs from the applied GA in the application of a local search 
technique. In order to improve the quality of the generated offspring, after applying the mutation 
operator to each generation, a local search method is implemented in the MA. In this method, 
through successive iterations, a predetermined number of neighborhood solutions (localit) are 
generated for each chromosome. At each iteration of the local search algorithm, the current solution 
is replaced with a generated neighborhood solution, which has a better fitness value. In order 
to generate neighborhood solutions, at first, a random integer number (R) in the  interval 
is generated. Then, in the first row of the current solution, the alleles of R randomly selected 
genes are replaced with the candidate location indices, which are not present in this solution. 
The second-row alleles corresponding to exchanged genes are replaced with randomly generated 
integer numbers in the  interval. At the end, the generated neighborhood solution 
is repaired in a manner explained in step 7 of the developed GA. Fig. 7 shows the manner of 
generating neighborhood solutions.
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Algorithm 1. The pseudo code of the GA.

Algorithm 2 shows the pseudo code of local search procedure. In order to construct the MA, 
this procedure should be added between steps 11 and 12 of Algorithm 1.

Fig. 7. An example of local search operation.
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Algorithms 2. The pseudo code of local search procedure.

Simulated annealing (SA)

Simulated annealing is a metaheuristic method based on the local search techniques in order 
to approximate the global optimum solution. SA refrains from being trapped in local minima by 
accepting worse solutions according to a certain probability(Falah & Khorshid, 2014). Due to 
the good quality of the solutions found by SA, this algorithm is applied to solve complicated 
combinatorial optimization problems in a wide variety of areas. SA was independently introduced 
by Kirkpatrick et al. (1983)and Černý (1985). 

In this paper, a combined SA algorithm with an inner layout algorithm (ILA) and an outer 
layout algorithm (OLA) is developed(Qin et al., 2015). OLA optimizes the location of open 
facilities, and ILA optimizes the number of assigned servers. The temperature ( T  ) is set to be 
in the initial level (TO) in the first step of the proposed SA. The algorithm starts with an initial 
solution  The representation of solution, generating the initial solution, and computing the 
fitness values are carried out according to steps 2, 3, and 4 of the developed GA,respectively. The 
global optimum solution  is set to be the initial solution. At each temperature level, through 
N1 successive iterations, the OLA generates neighborhood solutions  from the current solution

 At each iteration of OLA, in order to generate neighborhood solutions , a  random integer 
number (R1) in  interval is generated. Then, R1 number of randomly selected facilities 
in the first row of current solution matrix is replaced with the candidate location indices, which 
are not present in the current solution. If the objective value of  is less than  replaces. In 
the next step,  is compared with. Let Δ be the difference between the objective values of  
and,  that is,  replaces ; otherwise  replaces  
according to probability  At each iteration of OLA, ILA is repeated N2 times. At 
each repetition of ILA,  is set to be the current solution and ʺ is the generated neighborhood 
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solution from the current solution. In order to generate ʺ, a random integer number (R2) in 
the  interval is generated. Then the number of servers assigned to R2 randomly selected 
facilities in the second row of current solution matrix is altered to random integer numbers in the 

 interval. Since the number of servers has been changed, occasionally constraint (12) 
can be violated. Thus, as described instep 7 of the developed GA,the repairing operator is applied. 
The same replacing procedure described in OLA is applied for  and ʺ in the next step. After 
reaching N1, the temperature is reduced and this process is stopped when the final temperature 

 is reached. Algorithm 3 shows the pseudo code of the proposed SA.

Algorithm 3. The pseudo code of SA.

Parameter tuning

Since the parameters influence the efficiency and effectiveness of metaheuristic algorithms, 
it is necessary to adjust them in advance to implement the algorithms. Different parameters used 
for proposed algorithms with their relative ranges are given in Table 1. In order to calibrate 
the parameters, the Taguchi method is utilized in this study. Taguchi uses orthogonal arrays in 
order to investigate a large number of controllable factors with a small number of experiments 
(Mousavi et al., 2013). This method finds the optimal level of controllable factors by minimizing 
the effect of noise. In order to evaluate the variation of the response, the signal to noise ratio 
(S/N) is calculated according to Eq. (27) in which denotes the response value and  shows the 
number of orthogonal arrays.

                                                                                          (27)
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Table 1. Parameter levels.

Algorithms
Algorithm 
parameters 

Parameter  range Low(1) Medium(2) High(3)

GA

Npop (A) 100 - 300 100 200 300

Pc (B) 0.7 - 0.9 0.7 0.8 0.9

Pm (C) 0.3 - 0.5 0.3 0.4 0.5

Maxit (D) 100 - 300 100 200 300

MA

Npop (A) 50 - 150 50 100 150

Pc (B) 0.7 - 0.9 0.7 0.8 0.9

Pm (C) 0.1 - 0.3 0.1 0.2 0.3

Maxit (D) 50 - 150 50 100 150

Localit (E) 10 - 30 10 20 30

SA

 TO (A) 50 - 70 50 60 70

  Tf (B) 0.05 - 1 0.05 0.1 1

Α (C) 0.85 – 0.95 0.85 0.9 0.95

N1 (D) 10 - 30 10 20 30

N2 (E) 10 - 30     10 20 30

In this study, the variation is modeled by applying the smaller-is-better response.According to 
the proposed parameter combinations for each algorithm shown in Table 2, ten test problems of 
different sizes and specifications are solved five times in order to find the average objective values.
Fig. 8shows the S/N ratios obtained for GA, MA, and SA, respectively. According to these results, 
the best parameter combination for each algorithm is found. For example, Fig. 8(A) shows that, 
for GA, parameters A (Npop), B (Pc), C (Pm), and D (Maxit) are better to be at second, third, third, 
and second levels, respectively. 

The Taguchi method is performed by Minitab 16, and the parameter-tuned algorithms are coded 
in C# programming language and implemented on Intel Xeon E5- 2660v2@2.5 GHz computers 
with 8 GB RAM and 25 MB Cache.
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Table 2.Computational results for tuning GA, MA, and SA.

#
Algorithm Parameters

Response Algorithm
 Parameters

Response
MA SA GA

A B C D E Objective Objective A B C D Objective
1 1 1 1 1 1 2261.27 2537.88 1 1 1 1 2721.53
2 1 1 1 1 2 2176.18 2594.22 1 2 2 2 2311.90
3 1 1 1 1 3 2036.01 2547.36 1 3 3 3 2197.74
4 1 2 2 2 1 2186.32 2265.63 2 1 2 3 2407.95
5 1 2 2 2 2 2055.95 2233.44 2 2 3 1 2229.35
6 1 2 2 2 3 1903.39 2174.11 2 3 1 2 2217.82
7 1 3 3 3 1 2069.74 2378.25 3 1 3 2 2229.42
8 1 3 3 3 2 2035.24 2217.35 3 2 1 3 2423.62
9 1 3 3 3 3 1921.65 2182.28 3 3 2 1 2401.99
10 2 1 2 3 1 1940.55 2005.78 - - - - -
11 2 1 2 3 2 1998.20 2065.47 - - - - -
12 2 1 2 3 3 1946.91 2009.64 - - - - -
13 2 2 3 1 1 2178.23 2230.65 - - - - -
14 2 2 3 1 2 2014.53 2403.78 - - - - -
15 2 2 3 1 3 1896.36 2191.38 - - - - -
16 2 3 1 2 1 1994.45 2253.48 - - - - -
17 2 3 1 2 2 1961.22 1993.21 - - - - -
18 2 3 1 2 3 1949.61 2045.04 - - - - -
19 3 1 3 2 1 1914.17 2136.25 - - - - -
20 3 1 3 2 2 1980.70 1992.48 - - - - -
21 3 1 3 2 3 1829.30 2048.07 - - - - -
22 3 2 1 3 1 1820.30 1969.01 - - - - -
23 3 2 1 3 2 1731.87 1998.91 - - - - -
24 3 2 1 3 3 1667.94 2006.97 - - - - -
25 3 3 2 1 1 1919.07 2138.01 - - - - -
26 3 3 2 1 2 1877.49 2303.22 - - - - -
27 3 3 2 1 3 1888.12 2179.23 - - - - -

INSTANCE GENERATION

In order to generate random networks, which are close to the reality, network edges are 
classified into three levels based on the crowdedness criteria: crowded, semi-crowded, and less 
crowded edges. For each level, a specific rate is considered. For each network edge, multiplying the 
length by corresponding crowdedness rate determines the demand generation rate. According to the 
crowdedness criteria, the majority of candidate locations are selected among those network nodes, 
which are located in crowded areas. For entire generated instances, it is assumed that the length 
of edges follows a uniform distribution in [1, 10], crowdedness rates are 0.4, 0.8, and 1.2 for less 
crowded, semi-crowded, and crowded edges respectively, common service rate is 20, and maximum 
allowed waiting time is 0.35. Fig. 9 represents a network of 550 nodes and 65 candidate locations 
generated by the mentioned process. 
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Fig. 8 .S/N ratio plot for (A) GA parameters; (B) MA parameters; (C) SA parameters.

Fig. 9. A sample random network.
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RESULTS AND DISCUSSION

The computational result of implementing the proposed solution methods on 24 
problems of different sizes and specifications is shown in Table 3. In order to mitigate 
the effects of uncertainty, each algorithm is implemented ten times on each problem, and 
the average and best objective values along with the required CPU times of these runs are 
shown in this table.

As shown in Table 3, GAMS mathematical programming package failed to solve the 
majority of developed instances and even for very small size instancesthathave been solved 
by GAMS, the required CPU time was not reasonable. Since it is not possible to obtain 
the global optimum solution for the developed MINLP model, the performances of the 
proposed algorithms are compared together. Fig. 10compares the proposed metaheuristic 
algorithms according tothe average, best, and worst objective values along withthe required 
CPU times.As illustrated in thisfigure,MA outperforms GA and SAon the basis of objective 
function values, while, according to the required CPU times, GA outperforms the other two 
algorithms.

Fig. 10. (A) Average objective values; (B) best objective values; (C) worst objective values;
 (D) required CPU time of algorithms for different test problems.
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In order to compare the performance of the proposed algorithms statistically, one-way analysis 
of variance (ANOVA) for the average, best, and worstobtained objective values along withthe 
required CPU times was performed by using SPSS software. According to Table 4 obtained from 
ANOVA, algorithms significantly differ in the objective values and therequired CPU times. Table 
5 shows the results of Tukey’s test for multiple comparisons of the proposed algorithms. As can be 
seen from this table, while GA outperforms SA, and SA outperforms MA in terms of the required 
CPU times, MA outperforms GA, and GA outperforms SA in terms of objective values. 

CONCLUSION AND FUTURE WORKS

In this paper, an MINLP model is developed for multiple-server facility location problem with 
stochastic and uniformly distributed demands within M/M/C queuing framework. It has been 
assumed that each customer is assigned to the closest open facility. Considering distributed demands 
along the network edges increases the complexity of the developed mathematical model. Since the 
proposed model is NP-hard, in addition to the utilization of GAMS optimization compiler, three 
metaheuristic algorithms including GA, SA, and MA were proposed to solve the model. In order to 
tune the parameters of these algorithms, the Taguchi method was used, and then the parameter-tuned 
algorithms were implemented on 24 test problems of different sizes and characteristics. Finally, 
in order to compare the performance of the proposed algorithms, one-way ANOVA method and 
Tukey’s test were applied. The obtained results demonstrate that although GA requires less CPU 
times, MA finds better solutions according to the objective function values.

For future research, the problem can be modeled as a multi-objective problem in order to 
consider both customer and server aspects simultaneously. Furthermore, one can utilize other 
queuing frameworks by considering different distributions for demand generation, different 
service time distributions, or the capacity restrictionson facilities. In this case, the application 
of simulation optimization algorithms would be of great interest.Developing other heuristic or 
metaheuristic algorithms may also result in better solutions in shorter times.

Table 4. ANOVA for performance comparisons.

Sum of 
Squares

df
Mean 

Square
F Sig.

Average objective 
value

Between Groups 0.012 2 0.006 50.724 0.000
Within Groups 0.008 69 0.000
Total 0.021 71

Best objective
 value

Between Groups 0.111 2 0.006 43.070 0.000
Within Groups 0.009 69 0.000

Total 0.020 71

Worst objective value

Between Groups 0.013 2 0.006 55.623 0.000
Within Groups 0.008 69 0.000

Total 0.021 71

CPU Time
Between Groups 0.69 2 0.345 247.010 0.000
Within Groups 0.087 69 0.001
Total 0.777 71
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Table 5.Tukey’s test for multiple comparisons.

Tukey’s Test
Algorithm 

Method
N

Subset for alpha = 0.05
1 2 3

Average 
objective value

MA 24 0.3161
GA 24 0.3360
SA 24 0.3478

Best objective 
value

MA 24 0.3163
GA 24 0.3375
SA 24 0.3461

Worst objective 
value

MA 24 0.3154
GA 24 0.3368
SA 24 0.3476

CPU time
GA 24 0.2182
SA 24 0.3241
MA 24 0.4579
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حل م�ش�ألة موقع من�ش�أة ذات خوادم متعددة

 مع مط�لب ع�شوائية على طول حواف ال�شبكة
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الخـلا�شة

يناق�ش هذاالبحث م�ضاألة موقع ال�ضبكة للمن�ضاآت ذات خوادم متعددة المرافق والمعُر�ضة للازدحام. ويتم اختيار عدد 

من المن�ضاآت من بين العديد من المواقع المقُترحةلتلبية متطلبات العملاء. ولكل حافة �ضبكة، يتم توزيع العملاء المطابقين 

يُعتبر عدد الخوادم  اإلى ذلك،  بوا�ضون )Poisson(. وبالإ�ضافة  لعملية توزيع  ب�ضكل مت�ضاوي على طول الحافة وفقاً 

الكلي  لتقليل المجموع  اأ�ضي. تم تطوير نموذج ريا�ضي  تتبع توزيع  قرار وفترة الخدمة لكل خادم  في كل من�ضاأة كمتغير 

لأوقات ال�ضفر المتوقعة  للعملاء والمجموع الكلي المتوقع لأوقات النتظاروذلك با�ضتخدام تحليل نظام قوائم النتظار.  

NP-hard، لذلك تم بحث وتطوير ثلاثة من خوارزميات  ونظراً لأن م�ضائل تحديد مواقع �ضبكة توزيع الخدمات تعُد 

 ،)Genetic Algorithm( الم�ضاألة المقترحة، وهم كالتي: الخوارزمية الجينية التجريبيات )Metaheuristic( لحل 

النتائج  واأظهرت   .)Simulated Annealing( التلدين  ومحاكاة   )Memetic Algorithm( ميميتيك  خوارزمية 

اأف�ضلية ا�ضتخدام خوارزمية ميميتيك المقُترحةعلى الخوارزميتين الأخريتين من حيث القيم المو�ضوعية.
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