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   INTRODUCTION
In contemporary integrated manufacturing system, the CAPP (Computer Aided Process Planning) is for the 

PPS (Production Planning and Scheduling); meanwhile, it also needs the support of PPS system. The concurrent 
integration of CAPP and PPS, which formed the IPPS (Integrated Process Planning and Scheduling) system, is 
of great importance to improve equipment utilization, eliminate manufacturing resource conflicts, and reduce 
workpiece circulation time (Seker et al., 2013; Li et al., 2015; Zhang et al., 2015). However, the traditional CAPP 
is static, which may lead to the failure of the process plan (Usher et al., 1996). The process decisions are made 
under the assumption that the manufacturing resources are free at any time, without considering the plant dynamic 
events or equipment bottlenecks and other issues. Therefore, the process planning should be based on the specific 
manufacturing resources and generate a flexible process planning program, which can be dynamically integrated 
with the PPS system.

Flexible process planning implies the ability of a system to follow change requirements and thereby provide 
alternative ways of performing manufacturing operations on a part. In order to adapt to the dynamic environment of 
manufacturing resources and integrate with PPS system, process planning system should generate a large number 
of flexible process plans for each part, which is optimized and selected according to the manufacturing demands 
(Li et al., 2008). The flexible process planning, which is affected by process precedence constraints, involves many 
aspects, as the determination of sequence of operations, selection of machine tools, selection of cutting tools, 
selection of fixtures and so on, and it is also affected by process precedence constraints. As a result, the optimization 
and selection of flexible process planning are an NP-Complete problem (Petrović et al., 2015). The conventional 
non- heuristic methods cannot provide an optimal solution for this combinatorial problem. Thus, many researchers 
employed computational intelligence-based algorithms, such as genetic algorithm (GA), simulated annealing (SA), 
tabu search (TS), particle swarm optimization (PSO), ant colony optimization (ACO), and hybrid algorithms, to 
solve this problem. 

Yiphoi et al. (1996) discussed various aspects of parallel machining that influence the generation of process plans 
and proposed a process planner by a genetic algorithm for sequencing operations. Qiao et al. (2010) proposed four 
types of process planning rules including precedence rules, clustering rules, adjacent order rules, and optimization 
rules in the fitness calculations for alternative operation sequences. They investigated the impact of various rules 
on the result of operation sequencing and that of genetic algorithms parameters on the solution efficiency, as well 
as the influence of manufacturing resource environment on the process planning. Huang et al. (2011) developed a 
solution framework for complex parts based on genetic algorithms approach combined with operation precedence 
graph (OPG). With modified initial population, crossover operator and mutation operator, this approach is able to 
optimize the process planning by simultaneously considering the assignment of machining resources, determining 
sequencing operation and setup plans. 

Brown et al. (1997) proposed an alternative approach to accomplish the process planning of a part by decomposing 
the part into several features and determining the process method according to the feature description, and then 
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applying a stochastic search technique according to simulated annealing to obtain a process plan. Considering the 
processing costs, G. H. Ma et al. (2000) proposed a process planning model for generating a feasible plan for a given 
part based on variable machining resources, and an algorithm based on simulated annealing was developed to search 
for the optimal solution. Musharavati et al. (2012) applied three simulated annealing algorithms that exploit auxiliary 
knowledge in different ways to handle a manufacturing process planning problem for reconfigurable manufacturing. 
The computational analysis shows that the simulated annealing algorithms that are supported by auxiliary knowledge 
can obtain a better optimal solution than that without auxiliary knowledge support. Li et al. (2004) utilized the tabu 
search based approach to solve the process planning problem under the machining and cutting tools changes.

Wang et al. (2011) took advantage of particle swarm optimization (PSO) to solve the process planning problem. 
In this approach, a solution representation scheme is introduced for the application of PSO, and two kinds of local 
search algorithms are incorporated and interweaved with PSO evolution to find the best solution of operation-method 
selection and sequencing. Li et al. (2013) proposed a modified PSO algorithm, in which the efficient encoding, 
updating, and random search methods are improved, to optimize the process planning problem, and instance analysis 
shows that modified PSO algorithm can generate satisfactory solutions and outperform the genetic algorithm and 
simulated annealing algorithm. Milica et al. (2015) developed a new algorithm based on the utilization of PSO 
algorithm incorporated with chaos theory to optimize the flexible process plans, and experimental studies show 
that the new algorithm has a better performance than GA, SA, hybrid GA-SA, and generic PSO based approach. 
Considering the variety of alternative machines, alternative tools, as well as tool access direction (TAD), Zoran et al. 
(2016) established a multi-objective optimization model for flexible process planning and developed a modified PSO 
to solve the nondeterministic combinatorial optimization problem.

Krishna et al. (2006) applied the ant colony algorithm as heuristic search technique to optimize the operations 
sequence by considering the various feasibility constraints of processing. In view of the cost for machining process, 
Liu et al. (2013) applied an ant colony optimization algorithm to solve the process planning problem, which is involved 
with the selection of the available machining resources, the sequence of machining operations, and the manufacturing 
constraints. Wang et al. (2015) represented the process planning problem as a directed graph that consists of nodes, 
directed/undirected arcs, and OR relations and utilized a two-stage ant colony optimization approach to solve the 
process planning problem based on the graph.

In flexible process planning, there are complex constraint precedence relationships in the processing operations. 
The key point of algorithm designing to solve the operational sequencing problem is to deal with the constraint 
precedence relationship. Researchers have used many methods to describe the problem of the processing operation 
constraint, such as Petri-net (Kiritsis et al., 1996), operation precedence graph (Wang et al., 2015), process plan 
network (Sormaz et al., 2003), and AND/OR graphs (Li et al., 2008). However, these methods are unable to solve 
the problem of dynamic updating of the constraint relationship among the processing operations. In this paper, the 
precedence constraint relationship was described by precedence constraint matrix, and the dynamic updating of 
the operation constraints was represented by the updating of precedence constraint matrix. The dynamic updating 
algorithm of operation constraints was incorporated with ant colony algorithm, which was used to find the optimal 
solution to flexible process planning problem in limited search space.

FLEXIBLE PROCESS PLANNING PROBLEM AND PREFERENCE 
CONSTRAINT MATRIX

In part processing, manufacturing features can generally be used to describe the geometric structure of the parts 
that need to remove materials, the corresponding size tolerance, position tolerance, surface roughness, and other 
technical requirements.

The flexible process planning can quickly get the optimal process route by resetting the alternative manufacturing 
resources when the response manufacturing environment changed. The process flexibility of parts can be divided 
into three types: machining sequence flexibility, operation flexibility, and manufacturing resources flexibility (Li et 
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al., 2008; Wen et al., 2012). Machining sequence flexibility means that some processing operations of parts can 
interchange, mainly because the processing parts have multiple manufacturing characteristics; each manufacturing 
characteristic may have nop (nop≥1) machining operations. Since precedence constraints exist in partially machining 
operations and do not exist in other machining operations, the same part has a variety of processing order (Lv et 
al., 2013).  The flexibility of machining operation means that the same manufacturing feature can be finished by 
choosing the different machining operation, resulting in various processing schemes for each manufacturing feature; 
each machining scheme contains different machining operations. The flexibility of manufacturing resources suggests 
that the machining operation of parts can be done by making use of different manufacturing equipment. 

OP is machining operation, and AO is the set composed by machine tool (M) and tool (T ) and tool access direction 
(TAD). Thus, it can be seen that the sequencing orders of machining operation are the more important work of process 
planning for a certain part; the process route can be expressed by the following formula: 

                                                                               (1)

OPi is the i-th machining operation of parts and can be expressed by the following formula:

                                                            (2)

AOij is corresponding to the j-th alternative operation of the i-th machining operation of parts and can be expressed 
by the following formula:

                                                                                    (3)

Mij , Tij  
and TADij  represent, respectively, machine tool, tool, and tool feed direction of the alternative machining 

operation AOij. All the above alternative machining operations can be consisting of machining operations set, which 
is recorded as . Table 1 states any Oi of the alternative machining operation set.

Table 1. Class definition of an alternative machining operation.

Variable i Description
Alternative Operation_id

Machine_id

Machine_list

Tool_id

Tool_list

TAD_id

TAD_list

The alternative machining operation ID

The machine ID to execute the alternative machining operation

The candidate machine list for executing the alternative machining operation

The tool ID to execute the alternative machining operation

The candidate tool list for executing the alternative machining operation

The TAD ID to apply the alternative machining operation

The candidate TAD list for executing the alternative machining operation

There are precedence constraints in the machining operations because of the geometrical shape of manufacture 
feature and the constraint of manufacture process. This will be mainly embodied in the intersection occlusion of 
the manufacturing feature in the process of machining and the technological requirements. The usual processing 
precedence constraints mainly have the following situation:

(1) When the manufacture characteristics are machined on the same surface, they should strictly abide by the order 
of the roughing, semi-finishing, and finish machining.

(2) For the parts with surface and hole, if the plane is the datum of the hole, then abide by the surface after the hole. 
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(3) The reference surface should be machined prior to the machining feature associated with it.

(4) Main surface should be machined first, and then the minor surface is machined.

(5) If the two features intersect, along the feed direction, the obscured machining features should be machined later. 

The problem of processing priority was expressed by using the operation precedence graph in more literatures 
(Huang et al., 2011; Lee et al., 2004); after processing priorities were expressed by making use of operator precedence 
graph, the operator precedence graph is used to ensure the feasibility of the processing sequence. In the actual 
machining process, operator precedence graph cannot express complicated processing priority constraint relation, 
especially the multi-level nested preference constraint relationship. In the choice process of machining operations, 
there will be dynamic change situation. The precedence constraint matrix can conveniently express preference 
constraint relationship in the alternative machining operations (Huang et al., 2016). Suppose there is N alternative 
operations in set ; Nth-order matrix is defined to store the preference constraint relationship in alternative operations, 
as shown in formula (4):

                                                                          

(4)

where Oij represents the preference constraint relationship between Oi and Oj, , the value is 
defined by the following rules: when the i-th alternative operation is prior to the j-th alternative operation, then  

 When Oi and Oj belong to the same operation OPk, then , under other cases,  
Obviously, there is .

Precedence constraints determined by the processing technology are in the layer of machining operation OPi, 
then all alternative machining operations of OPi have the same precedence constraints. It is related to the tool access 
direction whether intersection features possess obscured precedence constraints, As a consequence, the precedence 
constraints are in the layer of alternative machining operations AOij; then the alternative machining operations in 
the same machining operation OPi have the different precedence constraints. The different machines and tools in 
the alternative operation set AOij of machining operation OPi do not influence the preference constraint relations; 
therefore, the alternative machining operation OPi will be redefined that it is only related with the direction of TADij 
and is as follows:

                                                                                   (5)

Suppose there is processing part as shown in figure 1 (Wang et al., 2015); part blank is the square envelope body, 
and processing operations of features are shown in table 2:

Fig. 1. An example part.
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Table 2. Operation selection for the example part.

Features Operations Machines Tools TADs
F1

F2

F3

F4

F5

F6

Milling(OP1)

Drilling(OP2)

Tapping(OP3)

Drilling(OP4)

Reaming(OP5)

Milling(OP6)

Milling(OP7)

Drilling(OP8)

Reaming(OP9)

M1

M1, M2

M1, M2

M1, M2

M1, M2

M1

M1

M1, M2

M1, M2

T1

T2

T3

T4

T5

T1, T6

T1, T6

T7

T8

-Z, -X

-Z

-Z

-X

-X

-Z

-Z , +Y

+X

+X

In the above table, M1 means vertical milling machine, M2 means drilling machine, T1 means mill cutter 1, T2 means 
drill 1, T3 means tapping tool, T4 means drill 2, T5 means reamer 1, T6 means mill cutter 2, T7 means drill 3, and T8 means 
reamer 2. The alternative operation is as shown in table 3 according to the description of the formula (5):

Table 3. Description of the alternative operations.

Numbers Operation Alternative
Operation Machines Tools TADs

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

OP1

OP1

OP2

OP3

OP4

OP5

OP6

OP7

OP7

OP8

OP9

AO11

AO12

AO21

AO31

AO41

AO51

AO61

AO71

AO72

AO81

AO91

M1

M1

M1, M2

M1, M2

M1, M2

M1, M2

M1

M1

M1

M1, M2

M1, M2

T1

T1

T2

T3

T4

T5

T1, T6

T1, T6

T1, T6

T7

T7

-Z 

-X

-Z

-Z

-X

-X

-Z

-Z

+Y

+X

+X

Along the same tool access direction of adjacency features, alternative machining operations AO11 and AO21 have 
the preference constraint relationship. Preference constraint relations in the machining operations are as follows: OP1 
is prior to OP2 and OP3 , OP2 is prior to OP3, OP4 is prior to OP5, OP4 and OP5 are prior to OP6 , OP8 is prior to OP9, 
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and OP8 and OP9 are prior to OP7. When there are preference constraint relations between machining operations, then 
the alternative machining operation also has the corresponding preference constraint relation; according to formula 
(4), preference constraint matrix is as shown in figure 2.

Fig. 2. The precedence constraint matrix.

According to the definition of the above alternative machining operator precedence constraint matrix , if there is 
, then ; get the matrix . Alternative machining operations  are divided into three types on 

the basis of : independent alternative machining operations, priority alternative machining operations, and subsequent 
alternative machining operations; they are, respectively, defined as follows.

Definition 1 Independent alternative machining operations set . If alternative machining operations Oi is in 

precedence constraint matrix, then there is a relation , indicating that the alternative machining 

operation has no precedence constraint relationship with other alternative operations, which is the independent 
alternative machining operations.

Definition 2 Precedence alternative machining operations set . If alternative machining operation Oi is in 

precedence constraint matrix, then there is a relation  and , revealing that Oi is precedence alternative 

machining operation of one or more alternative machining operations.

Definition 3 Subsequent alternative machining operations set . If alternative processing operation Oi is in 

precedence constraint matrix, then there is a relation 
 
, indicating that Oi begins to machine after one or more 

alternative machining operations have finished, which is the subsequent alternative processing operation. 

According to the above definition, O1, O2, O5 and O10 belong to precedence alternative machining operations 
set , while the others belong to the subsequent alternative machining operations set ; there is no independent 
alternative machining operations set . The precedence alternative machining operations set  and independent 
alternative machining operations set  belong to the current feasible alternative machining operations. So the 
definition of feasible alternative machining operation can be defined as follows.

Definition 4 feasible alternative machining operations set . If alternative machining operation Oi is in precedence 

constraint matrix, then there is a relation , revealing that Oi is precedence alternative machining operation or 

independent alternative machining operations, which is the feasible alternative processing operation.
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GENERATION OF DYNAMIC FEASIBLE ALTERNATIVE MACHINING 
OPERATIONS SET

When planning the flexible manufacturing route, the chosen alternative machining operations will not be chosen 
again, which belong to Tabu alternative machining operations set. And when a certain machining operation has more 
alternative machining operations, the other alternative machining operations will not be chosen again after one of 
the alternative machining operations is chosen, which also belongs to Tabu alternative machining operations set. 
Suppose Tabu alternative processing operation list is , then the feasible alternative processing operation list is 

. Since Tabu alternative processing operation list  is updated dynamically with 
the selection of each step, feasible alternative machining operation list  is also dynamically updated.

The selected nodes are all machining operations selected from current feasible alternative processing operations 
list. It assumes the current selected alternative machining operation is Oi , and the alternative machining operations 
set of process route is . According to the preceding definition, there are two ways to achieve the dynamic update 
of ; one is to update dynamically , and combine  with , and generate  to realize the dynamic update 
of . The other method is that the diagonal values of the alternative machining operation choose to enter  
in each step. And other alternative machining operations belong to the same machining operations and are all set to 
constant according to the definition of , so that they do not meet the definition that each column sum is zero and 
realize the dynamic update of . The second method is employed in this paper, and then the generating process of 
current dynamic update feasible alternative processing operations set is as shown in figure 3.

Fig. 3. Generating process of feasible alternative processing operation list.



279Fengli Huang, Haiyan Wang, Jinmei Gu and Qun Sun

The steps generated by the above feasible alternative machining operations list are explained as follows:

Step 1: If there is  in alternative processing operator precedence constraints matrix , then set
, and get matrix .

Step 2: Using definition 4, we can get feasible alternative machining operations set  based on matrix ; then 
feasible alternative machining operations list  can be gotten in time t.

Step 3: Determine whether Oi  exists  in ; if no, go to Step 6.

Step 4: If yes, set the value of the row and column of Oi  and Oj with  in  and  as 0; the corresponding 
values on the diagonal of  are set to constant; 

Step 5: Move Oi  into process route set ;

Step 6: Set the values of the row and column of Oi  in  as 0; the corresponding row and column of  are 0 as well; 
then the corresponding values on the diagonal of  are constant; 

Step 7: Sum every column of , and update feasible alternative processing operation set  under the condition of 

; then feasible alternative machining operations list  can be gotten in time t+1.

The selection process of a process route of parts shown in figure 1 is shown in figure 4. 

Fig. 4. Selected alternative operation for the example part.

Process route selection of the above parts is carried out in feasible alternative processing operation every time the 
alternative machining operations are updated dynamically. At the same time, it is clear that the scale of the solving 
problem is greatly shrunk after the search space limit of each step of the process planning.

OPTIMIZATION OBJECTIVE OF FLEXIBLE PROCESS PLANNING
The flexible process planning problem is generally described as follows: in view of the all feasible processing route 

of machined parts, choose from one of them, which optimizes some indicators. In the existing study, optimization goal 
based on machining time and cost are usually used (Liu et al., 2013; Blanch et al., 2011; Ciurana et al., 2008). The 
optimization goal based on the manufacturing cost is mainly considered in this paper, which will include the following 
five aspects: cost of machine tools, tooling cost, cost of machine tool changing, cost of tools changing, and cost of the 
clamping changing; the specific calculation process are described as follows:

(1) Machine tools cost of the total parts processing (TMC)

                                                      (6)
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MjCi is the manufacturing cost of machine tool that the j-th machine tools in the i-th machining operations need, 
and n is the number of machining operations. 

(2) The total tooling cost of parts processing (TTC)

                                                                  (7)

TjCi is the tooling cost that the j-th tools in the i-th machining operation need.

(3) The total cost of machine tool changing (TMCC)

                                                                                   (8)

MCC is the cost that machine tools need; we can consider that every time the cost of the machine tool 
transformation is the same. NMC is the times of machine tool transformation, which can be calculated by formula 
(9) and formula (10).

      
(9)

 
                                                                                 

(10)

(4) The total cost of tools changing (TTCC)

The machining operations of the two adjacent parts do not need to transform tool only when using the same tool 
and machine tool. Otherwise, the tools need to be changed.

                                                                                       (11)

TCC is the cost of tools changing once. NTC is the times of tools changing, which can be calculated by formulas 
(12) and (13).

                                              
(12)

                                                                              (13)

 (5) The set-up changing cost of parts (TSCC)

The machining operations of the two adjacent parts can be thought as they do not need set-up changing only when 
they use the same tool and the same feed direction. Otherwise, set-up changing needs to be done once.

                                                                               (14)

SCC is the cost of set-up changing once. NSC is the times of production preparation, which can be calculated by 
formulas (15) and (16).

                                                
(15)
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                                                                                                         (16)

(6) The total weighted cost of parts (TWC)

The optimization goal based on the machining cost can be set to minimum total weighted cost, which is shown as 
formula (17):

        (17)

A NOVEL TWO-STAGE ACO ALGORITHM FOR FPP
The ACO algorithm is a population-based heuristic, which simulates the foraging behavior of ants and develops 

mechanisms of cooperation and learning to solve optimization problems (Dorigo et al., 1996). In an ant colony, ants lay 
pheromone trails on the path while foraging to share information with other ants and direct them toward food sources. 
An isolated ant may move randomly and lay pheromone trail over traversed path. An ant encountering a previously 
laid trail can apply a probabilistic approach, which favors the path with the highest pheromone trail to decide where 
to go, thus reinforcing the trail with its own pheromone. This forms a positive feedback, enabling rapid discovery of 
food source. Eventually, with the cooperation among ants, the shortest route from the colony to food source can be 
established. ACO uses the similar cooperation mechanism to search for good solutions to optimization problems.

The flexible process planning problem is a non-deterministic polynomial complete (NP-Complete) problem (Liu 
et al., 2013). Due to the existence of operation precedence constraints in the problem, infeasible solutions often 
occur when using heuristics (e.g., GA, ACO, etc.) to solve the problem. To ensure the feasibility of the process 
plans, additional adjustments need to be done. The adjustment methods that prevail in the literature include constraint 
adjustment method (Li et al., 2002), penalty function method, and restricting the search space. Due to lack of prior 
information, when dealing with complex precedence constraints, constraint adjustment methods may lead to a very 
slow convergence of the algorithm, and penalty function method mainly applies when there is a clear boundary 
between feasible and infeasible regions. Hence, this paper utilizes the adjustment method of restricting the search space 
and develops a novel ACO algorithm integrated with a dynamic adjustment of the alternative machining operations 
set. The proposed algorithm consists of two stages: i) the first stage is for constraint-based operation selection and 
sequencing; ii) the second stage aims at allocating resources (i.e., machines and tools) for the selected and sequenced 
operations obtained from the first stage, taking each alternative machine-tool combination for an operation as a sub-
node that subordinates to that operation node.

ANT COLONY AND TRANSITION PROBABILITY
Assume that there are N operations. Take each operation as a particular node in the graph. An edge (Oi, Oj) 

represents that operation Oj be processed right after Oi. Let m be the total number of ants in the colony, bi (t) be the 
number of ants situated at operation node Oi at time t ( ), and  be the intensity of pheromone trail on edge 
(Oi, Oj) at time t. Take  as the set of pheromone trail intensity for all the alternative edges at time 
t. Assume that the initial intensities of pheromone trail on each edge are equal, and .

Individual ants lay pheromone trails on the traversed edges and choose their next operation node with respect to 
probabilities that depend on pheromone trails and the attractiveness of alternative options (i.e., next operation). The 
transition probability for ant k  at operation node Oi to move to node Oj for the next step is defined as

                                                               

(18)

where  represents the set of all the alternative operation nodes for the next step, and parameters  and  
weigh the relative importance of trail versus attractiveness.  is a heuristic function that evaluates the attractiveness 
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of edge (Oi, Oj), which depends on the production cost of the edge, as shown in Eq. (19). The less an edge cost is, the 
more attractive it is; hence there is a higher probability for ants following it.

                                                                                                     (19)

PHEROMONE UPDATING
At each iteration, individual ants change pheromone trail intensity by laying their own pheromone trails on the 

traversed edges. Pheromones are updated by the following rule:

                                                                   (20)

                                                                                           
(21)

                                                
(22)

where  is the pheromone evaporation rate, and  stands for the pheromone persistence factor.  is 
the pheromone increment of edge (Oi , Oj), and  refers to the quantity of pheromone laid on edge (Oi, Oj) by ant 

. Q is a constant and TWC is the total weighted cost defined in Eq. (17). Assume that .

To better explore the search space and prevent premature convergence, a lower bound  and an upper bound  
are imposed on pheromone trails, preventing the relative differences between pheromone trails from becoming too 
extreme. Use Eq. (24) to adjust trails within .

                                    

(24)

OVERALL PROCEDURE OF THE PROPOSED ALGORITHM FOR FPP
The main idea of the proposed algorithm is as follows: First randomly place each ant on an operation node from 

the feasible alternative machining operations list ; update the precedence constraint matrix and the feasible 
alternative machining operations set ; select the next operation node from the updated feasible alternative machining 
operations list . Synthesize the transition probability to alternative operations; repeat the previous two steps 
until a feasible complete process plan has been produced. Through iterations of ants searching, the process plan with 
the least cost can be obtained.

Step 0. Specify the parameters such as the total number of ants m, the pheromone evaporation rate , weights  and 
, and the maximal iteration number . Set  and  ( ). Set  and the iteration 

number .

Stage 1 Precedence constraint-based operation selection

Step 1.1 Set the index of ant .

Step 1.2 Obtain the feasible alternative machining operations set , and initial feasible alternative machining 
operations list .

Step 1.3 Randomly place ant k on an operation node from . Set . Update  according to the 
dynamic adjustment method of the alternative operations set.
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Step 1.4 Compute  and  according to Eqs. (19)-(20). With the transition probability , select the next 
operation node from  for ant k.

Step 1.5 Set . Update .

Step 1.6 If there is no operation left in , execute Stage 2. Otherwise, go to Step 1.4.

Stage 2 Machine and tool resource allocation

Step 2.1 Set the maximal cycle times , .

Step 2.2 Randomly choose a machine from Machine_list and a tool from Tool_list for the first selected operation 
Oi in the process plan (i.e., the traversed route of ant k) generated in Stage 1. Record the machine ID and the tool ID.

Step 2.3 Choose the machine-tool combination for the next operation with the least changeover cost when switching 
from the previous operation. This step continues until all the operations in the process plan have been allocated with 
machine and tool resource.

Step 2.4 Compute the total weighted cost TWC for the process plan generated by ant k.

Step 2.5 Find the minimum TWC in all cycle times, and save the process route information of manufacturing 
resource selection.

Step 2.6 Set . If , and return to Step 1.2. Otherwise, execute Step 2.7.

Step 2.7 Find the best process plan with the least TWC among all the m process plans generated by these m ants.

Step 2.8 Update the pheromones according to Eqs. (20)-(24). Set .

Step 3 If , terminate the algorithm and output the best process plan with the minimum TWC. Otherwise, 
empty the alternative operations set, and return to Stage 1.

CASE STUDY
The algorithm proposed in this paper is verified by the part shown in figure 5 (Li et al., 2002); firstly, the conditions 

set are as follows: (a) all the machine tools and cutting tools are available; set the value of  in objective 
function (17) to be 1. (b) All the machine tools and cutting tools are available, in objective function (17), 

.

Fig. 5. Geometric figure of Instance parts.

The above parts have 14 manufacturing features. The relevant resources and costs of machines and tools are 
shown in tables 4-5, and the related information of machining operations are shown in table 6. Suppose the MCC 
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cost of machines changing once is 300, the SCC cost of tools changing once is 120, and the SCC cost of starting the 
transformation once is 15.

Table 4. Machine resources and costs.

Machines no. Types mci

1

2

3

Drill machine

Milling machine

Three-axis vertical milling machine

10

35

60

Table 5. Tool resources and costs.

Tools no. Types mci

1

2

3

4

5

6

7

8

Drill 1

Drill 2

Reamer

Boring tool

Milling cutter 1

Milling cutter 2

Slot cutter

Chamfer tool

3

3

8

15

10

15

10

10

Table 6. Description of the alternative operations.

Numbers Features Feature 
descriptions Operations Alternative

Operations Machines Tools TAD

O1 F1 Two holes OP1 AO11 M1, M2, M3 T1 +Z

O2 F1 OP 1 AO 12 M1, M2, M3 T1 -Z

O3 F2 A chamfer OP 2 AO 21 M2, M3 T8 -X

O4 F2 OP 2 AO 22 M2, M3 T8 +Y

O5 F2 OP 2 AO 23 M2, M3 T8 -Y

O6 F2 OP 2 AO 24 M2, M3 T8 -Z

O7 F3 A slot OP 3 AO 31 M2, M3 T5, T6 +Y

O8 F4 A slot OP 4 AO 41 M2 T5, T6 +Y

O9 F5 A step OP 5 AO 51 M2, M3 T5, T6 +Y
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O10 F5 OP 5 AO 52 M2, M3 T5, T6 -Z

O11 F6 Two holes OP 6 AO 61 M1, M2, M3 T2 +Z

O12 F6 OP 6 AO 62 M1, M2, M3 T2 -Z

O13 F7 Four holes OP 7 AO 71 M1, M2, M3 T1 +Z

O14 F7 OP 7 AO 72 M1, M2, M3
T1 -Z

O15 F8 A slot OP 8 AO 81 M2, M3 T5, T6 +X

O16 F9 Two holes OP9 AO 91 M1, M2, M3 T1 -Z

O17 F10 A slot OP 10 AO 101 M2, M3 T5, T6 -Y

O18 F11 A slot OP 11 AO 111 M2, M3 T5, T6 -Y

O19 F12 Two holes OP 12 AO 121 M1, M2, M3 T1 +Z

O20 F12 OP 12 AO 122 M1, M2, M3 T1 -Z

O21 F13 A step OP 13 AO 131 M2, M3 T5, T6 -X

O22 F13 OP 13 AO 132 M2, M3 T5, T6 -Y

O23 F14 Two holes OP 14 AO 141 M1, M2, M3 T1 -Y

In the literature (Li et al., 2004) and (Li et al., 2013), preference sequence constraints between each feature are 
shown in table 7.

Table 7. Machining constraints and interaction.

Constraints Descriptions Hard or soft
Tool interactions

Datum interactions

Thin-wall interactions

Material removal interactions

F1 should be prior to F2

F6 should be prior to F7

F10 should be prior to F11

F13 should be prior to F14

F9 should be prior to F8

F12 should be prior to F10

F8 should be prior to F9

F10 should be prior to F12

F13 should be prior to F14

Hard

Hard

Soft

Soft

In the above machining precedence constraints, the feature F1 has two alternative machining operations; when 
the feature F1 uses AO11 to machine, then the relation F1 should be prior to F2 which may be not established. Mainly 
consider the above Hard constraints of machining precedence constraints; the precedence constraint matrix is gotten 
as shown in figure 6.
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Fig. 6. The precedence constraint matrix for the example part.

The setting parameters of ant colony algorithm are as follows: the number of ants m=15, ,   
, Q=3000, . The situations (a) and (b) of the instance parts, respectively, run 10 times; the optimum 

value of every generation is as shown in figures (6) and (7).

 

Fig. 6. Optimal value of each iteration in condition (a).
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Fig. 7. Optimal value of each iteration in condition (b).

In the result of condition (a), TWC(1083) occurs 1 time, TWC(1098) occurs 1 time, TWC(1113) occurs 1 time, 
TWC(1188) occurs 4 times, and TWC(1203) occurs 3 times. In the result of condition (b), TWC(850) occurs 6 times, 
and TWC(970) occurs 4 times. The flexible precedence constraint problems are not considered in this paper, which 
will violate flexible constraint added to the total cost in the way of penalty cost. In this instance, there are two pairs of 
soft interactions shown in table 7: (1) F9 should be prior to F8 and F8 should be prior to F9. (2) F12 should be prior to 
F10 and F10 should be prior to F12. Therefore, in order to facilitate comparison with other algorithms, for any feasible 
process plan, the penalty cost should be 200. The comparing results with other algorithms are shown in table 8. The 
optimal solution under the conditions of (a) and (b) is shown in table (9) and table (10). 

Table 8. The results compared for the example part.

Condition Proposed 
Algorithm

Two-stage
ACO (Wang
 et al., 2015)

ACO 
(Liu et al., 2013)

Genetic 
Algorithm

(Li et al., 2002)

Simulated 
annealing

(Li et al., 2002)

Tabu search 
(Li et al., 2014)

(a)

Mean 1363.9 1329.0 1329.5 1611.0 1373.5 1342.0

Maximum 1403.0 1348.0 1343.0 1778.0 1518.0 1378.0

Minimum 1283.0 1328.0 1328.0 1478.0 1328.0 1328.0

(b)

Mean 1098.0 1170.0 1170.0 1482.0 1217.0 1194.0

Maximum 1170.0 1170.0 1170.0 1650.0 1345.0 1290.0

Minimum 1050.0 1170.0 1170.0 1410.0 1170.0 1170.0

It is shown from table 8 that the minimum TWC(1083) is the best result among all of six algorithms under the 
condition of (a). The minimum TWC(1050) and the mean TWC(1098) are the best results among all of six algorithms 
under the condition of (b). In the literature [19], the number of iterations is 200; the number of ants is 25. If the number 
of iterations is increased, this can increase the occurrence number of relatively small optimization values such as 
TWC(1083) and TWC(1098) under the condition of (a) and further reduce the average optimized.
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Table 9. One of the best flexible process planning under condition (a) for the example part.

No. O7 O9 O8 O17 O18 O22 O15 O23 O16 O14 O1 O19 O3 O12

Feature F3 F5 F4 F10 F11 F13 F8 F14 F9 F7 F1 F12 F2 F6

A-Op. AO31 AO51 AO41 AO101 AO111 AO132 AO81 AO141 AO91 AO72 AO1 AO121 AO21 AO62

Machine M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2

Tool T5 T5 T5 T5 T5 T5 T5 T1 T1 T1 T1 T1 T8 T2

TAD +Y +Y +Y -Y -Y -Y +X -Y -Z -Z +Z +Z -X -Z

Get the value of parameters by calculation as follows: the value of TMC is 490, the value of TTC is 98, the value 
of MCC is 0, the value of NMC is 0, the value of TMCC is 0, the value of TCC is 120, the value of NTC is 3, the value 
of TTCC is 360, the value of NS is 9, the value of SCC is 15, the value of TSCC is 135, the value of TWC is 1083, and 
the penalty cost is 200.

Table 10. One of the best flexible process planning under condition (b) for the example part.

No. O17 O18 O15 O9 O21 O8 O7 O1 O20 O16 O14 O23 O11 O5

Feature F10 F11 F8 F5 F13 F4 F3 F1 F12 F9 F7 F14 F6 F2

A-Op. AO101 AO111 AO81 AO51 AO131 AO41 AO31 AO1 AO122 AO91 AO72 AO141 AO61 AO23

Machine M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2

Tool T5 T5 T5 T5 T5 T5 T5 T1 T1 T1 T1 T1 T2 T8

TAD -Y -Y +X +Y -X +Y +Y +Z -Z -Z -Z -Y -Z -Y

Get the value of parameters by calculation as follows: the value of TMC is 490, the value of TTC is 98, the value of 
TCC is 120, the value of NTC is 3, the value of TTCC is 360, the value of TWC is 948, and the penalty cost is 200. 

According to the above calculation example, the cost of machines changing once is higher than the cost of 
machining a feature, and the cost of tools changing once is higher than cost of machining a feature. Consequently, 
the solved optimal solution changes machine tools and cutting tools as little as possible under the premise of meeting 
the processing precedence constraints. The following two conditions are set in order to further test effectiveness of 
the algorithm: (c) all the machine tools and cutting tools are available, but the drilling operation must be finished 
by machine tool M1; the value of  in objective function is set to 1. (d) all the machine tools and cutting tools 
are available, but the drilling operation must be finished by machine tool M1; the values of parameters in objective 
function (17) are as follows: , . The parameter settings of algorithm are described 
above; the number of iterations , similarly running 10 times. The optimum value of every generation is 
shown in figures 8 and 9. The optimum solution under the conditions of (c) and (d) is, respectively, shown in table 
11 and table 12.
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Fig. 8. Optimal value of each iteration in condition (c).

Fig. 9. Optimal value of each iteration in condition (d). 

Table 10. One of the best flexible process planning under condition (c) for the example part.

No. O17 O18 O22 O8 O7 O10 O15 O11 O16 O14 O20 O23 O2 O6

Feature F10 F11 F13 F4 F3 F5 F8 F6 F9 F7 F12 F14 F1 F6

A-Op. AO101 AO111 AO131 AO41 AO31 AO51 AO81 AO61 AO91 AO72 AO122 AO141 AO12 AO62

Machine M2 M2 M2 M2 M2 M2 M2 M1 M1 M1 M1 M1 M1 M2

Tool T5 T5 T5 T5 T5 T5 T5 T2 T1 T1 T1 T1 T1 T8

TAD -Y -Y -Y +Y +Y -Z +X +Z -Z -Z -Z -Y -Z -Z



Ant colony optimization approach based on precedence constraint matrix for flexible process planning290

Table 11. One of the best flexible process planning under condition (d) for the example part.

No. O15 O17 O18 O22 O8 O9 O7 O12 O23 O13 O16 O19 O2 O4

Feature F8 F10 F11 F13 F4 F5 F3 F6 F14 F7 F9 F12 F1 F2

A-Op. AO81 AO101 AO111 AO132 AO41 AO51 AO31 AO62 AO141 AO71 AO91 AO121 AO12 AO22

Machine M2 M2 M2 M2 M2 M2 M2 M1 M1 M1 M1 M1 M1 M2

Tool T5 T5 T5 T5 T5 T5 T5 T2 T1 T1 T1 T1 T1 T8

TAD +X -Y -Y -Y +Y +Y +Y -Z -Y +Z +Z -Z -Z +Y

Because the drilling operation can only be done by machine M1, there are precedence constraints in the alternative 
machining operations; so, the machining tools need to be changed twice at least. The optimum value is 1928 (with the 
value of penalty cost being 200) under the condition of (c), and the optimum value is 1500 (with the value of penalty 
cost being 200) under the condition of (d). The results running ten times independently also show that it can search the 
minimum value, which can be searched currently many times.

CONCLUSIONS
An ant colony optimization method is proposed to solve the flexible process planning problem based on the 

dynamic updating of feasible alternative machining operations. The solution process is to search the route of the 
feasible alternative machining operations firstly and then select the processing operation resource on the basis of the 
obtained process route. The approach presented here has several advantages in the following aspects:

(1) In the description of flexible process planning, the alternative machining operations were generated by the TAD. 
The solving of the process planning is divided into two stages: the first stage is to determine the sequence of the 
alternative machining operations, and the second is to configure the manufacturing resources for the alternative 
machining operation sequences.

(2) In the processing of precedence constraint, the alternative machining operations were classified based on the 
precedence constraint matrix. As a result, it is very convenient to obtain the set of the feasible alternative machining 
operations, which was dynamically updated by setting the values of the row and the column corresponding to 
the last selected alternative machining operations to 0 in the precedence constraint matrix and the values of the 
corresponding diagonal were set to constant. Through the processing above, the next search space of ACO can be 
effectively limited. 

(3) In the processing of the alternative machining operations, only one feasible alternative machining operation 
can be selected for the same machining process. By searching for the presence of a value of -1 in the row and 
column corresponding to the selected alternative machining operations in the precedence constraint matrix, the 
row and column of the corresponding feasible alternative machining operations are set to 0 and diagonals are set 
to constant, if -1 presents. As a result, only one feasible alternative machining operation can be selected in the 
same machining operation according to the definition of the feasible alternative machining operation.  

(4) In terms of the performance of algorithms proposed, the results show that the proposed algorithm is superior to 
one performance index at least compared with the existing algorithms through specific examples. Moreover, the 
robustness of the algorithm is better.

In further study, the method of precedence constraint dynamic updating proposed in this paper can be incorporated 
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with other intelligent algorithms to solve the problems of process planning and production scheduling, which could be 
compared with the existing algorithms to enhance the performance of the algorithm even more.
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