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ABSTRACT

This paper presents a new discrete layer finite element method modeling thin and 
moderately thick orthotropic and laminated composite cylindrical shells. The element 
formulation is based on the first order shear deformation theory of shells. A twenty-
degrees-of-freedom plane stress element is utilized and modeled with in-plane 
displacements defined at the interfaces of the element layers in addition to the radial 
displacement. A field consistency approach is implemented to insure that the element 
is free from locking due to membrane tangential, shear and transverse shear strains. 
The field consistency approach used eliminates inconsistent terms from the original 
displacement shape functions that correspond to the targeted strains. The new element 
is validated through a series of benchmark problems and has shown accurate and fast 
converging results.
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INTRODUCTION

Shells are major structural elements in diverse fields of engineering technology 
such as automotive, aerospace and civil construction. The simulation of complex 
structures, including shells, is a mandatory step in engineering design and the finite 
element method is the best computational procedure known to date that can serve this 
purpose. The finite elements of shells started with the facet shell element (Hrennikoff 
& Tezcan, 1966; Zienkiewicz & Cheung, 1966), where the shell surface is treated as 
an assembly of flat plate elements. This method lacks the coupling between bending 
and membrane within each element and requires coordinate transformation to derive 
the element mass and stiffness matrices. Thus, to overcome the disadvantages of the 
facet shell elements, research efforts continued toward deriving curved shell elements 
that are based on shell theories, and the initial efforts resulted in the first known thin 
shell finite elements by Bogner et al. (1967) and Connor & Brebbia (1967). Another 
family of elements is the degenerated shell elements developed by Ahmad et al. 
(1970), which discretize the three dimensional solid element in terms of mid-surface 
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nodal variables. The last well established type of shell elements is known as the solid 
shell element (Ausserer & Lee, 1988). In this approach, the shell element is modeled 
either as a 3-D solid element with three displacement components per node or a 2-D 
solid element with six vector components per node defined over a mid-surface or a 
reference surface. 

A numerical problem known by locking, is usually encountered in finite element 
modeling for which some parts of the element stiffness matrix have unreasonably high 
values under specific loading and/or geometric conditions, resultsing in an overall 
stiff element. For structural mechanics type of problems, the finite element locking 
phenomenon is found mostly in shear deformable structures with strong appearance 
in curved structures. 

Several methods have been developed to alleviate locking in shell elements such 
as the assumed strain method, which is a very effective way that has been successfully 
applied to overcome locking problems in curved elements. One of the earliest works in 
the assumed strain approach was done by Ashwell & Sabir (1972) to derive independent 
strain functions for thin cylindrical shells including explicit rigid body modes. Their 
idea was extended by many authors such as, for example, Djoudi & Bahai (2004), 
who used a different thin shallow shell theory. The success of the original approach 
was followed by many efforts, such as the work done by MacNeal (1982) to derive 
bilinear shell elements, and by Dvorkin & Bathe (1984) to derive a class of successful 
degenerated shell elements known by MITC elements. Consequently, The enhanced 
assumed strain method, presented by Simo & Rifai (1990) has been derived from a 
three field variational principle with displacement, strain and stress as independent 
variational parameters. Belytschko & Leviathan (1994) developed an assumed strain 
procedure using the Hu-Washizu varuational principle to stabilize the zero-energy 
modes of shell elements. Another common numerical technique that is widely used 
to deal with locking problems in the finite element analysis is the selective reduced 
integration (Zienkiewicz et al., 1979) of strain energy terms, which was extended 
also to investigate the membrane locking in curved elements (Stolarski & Belytschko, 
1982). For flat shell elements, the quasi-conforming technique (Kim et al., 2003) is 
used for which the strains are discretized using a truncated Taylor series expansion, 
while the displacements are defined using string functions. Unlike most finite element 
approximation functions that interpolate the displacements within the element domain, 
the displacement approximation functions in the quasi-conforming technique are used 
to surface fit nodal displacement values within a problem domain. Carrera & Brischetto 
(2008) developed closed form solutions for a unified formulation to investigate the 
thickness locking for thin shell theory, first order shear deformation theory, higher 
order theories, mixed theories and layer-wise theories. Among their conclusions, 
they mentioned that the thickness locking appears, if and only if, transverse normal 
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strains are assumed constant and that it does not depend on geometrical curvature 
parameters.

An interesting approach to avoid locking in shell elements is the field consistent 
strain field approach, developed by Prathap (1985) to derive shear deformable shell 
elements. Inspired by the work of Mohr (1980, 1981), Prathap explored the origin of 
the locking problem by analyzing the true and spurious constraints of the discretized 
tangential membrane and transverse shear strains. As a result, the field consistent 
strains are derived and replace the original strains in the energy expressions. Many 
field consistent techniques were developed later such as the consistent polynomial 
order technique for shape functions (Koziey & Mirza, 1997), the discrete shear 
gap (Bletzinger et al., 2000) and the discrete strain gap (Koschnick et al., 2005) to 
mention a few. Those aforementioned formulations are almost identical to the reduced 
integration techniques, which prove the current success of implementing reduced 
integrations in commercial finite element packages to alleviate locking problems.  

The previous models have been extended to model multilayered shell structures. 
As a few examples, Lee et al. (2002) investigated the dynamic characteristics of 
cylindrical composite panels with viscoelastic layers based on the partial layerwise 
theory. Nayak & Shenoi (2005) developed a family of assumed strain shell elements 
based on a refined higher order theory to analyze the natural frequencies of composite 
sandwich shells. Jeung & Shen (2001) extended the isoparametric degenerate shell 
element  to model constrained layer damping treatments. Kulikov & Plotnikova (2006) 
presented a family of geometrically exact assumed stress–strain four-node curved 
solid-shell elements with six displacement degrees of freedom per node by using the 
first-order equivalent single-layer theory. Arciniega & Reddy (2005) developed a finite 
element model for a consistent third-order shell theory with applications to composite 
circular cylinders. A class of solid shell finite elements was formulated based on the 
application of the enhanced assumed strain method for linear (Alves de Sousa et al., 
2003), nonlinear (Fontes Valente et al., 2004), and extended to layerwise nonlinear 
analysis (Moreira et al., 2010). 

Discrete layer theories are known for their accuracy, especially for multilayered 
structures, since the displacement field is usually defined at the interfaces of the 
structure. Alam & Asnani (1984) developed a discrete layer theory for moderately 
thick shells to study the vibration and damping of a general multi-layered cylindrical 
shell having an arbitrary number of orthotropic material layers and viscoelastic layers. 
The discrete layer finite element model was then developed for shells (Ramesh & 
Ganesan, 1993 Wang & Chen, 2004), with limitation to circular cylindrical shapes 
using axisymmetric, circumferential wave numbers. In this paper, a discrete layer finite 
element model is derived for cylindrical shells and panels using a modified version 
of the consistent strain field approach. The element is basically a brick shell element 
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incorporating the plane stress assumption. Thus, it has the advantage of defining the 
inplane displacement field at the shell layer interfaces while reducing the size of the 
discretized shell problem via plane stress. The element can be easily extended to 
general shell configurations via simple modification of the kinematic equations.

THEORETICAL FORMULATION

This section describes the discrete layer formulation for a moderately thick shell under 
the plane stress assumption. Then, a field consistent finite element model is formulated 
for anisotropic composites. 

Kinematics

For shells in a state of plane stress, the transverse (radial) displacement, w, is assumed 
constant through the thickness. The inplane axial and tangential displacements, u and 
v, for layer k are assumed to vary linearly across the thickness of the layer (see Figure 
1). Hence the displacement field is defined by

                                  (1)

The strain displacement relations for moderately thick cylindrical shells are given by
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Where ε
 
and γ are the inplane strains and transverse shear strains, respectively, 

with r denoting the radius of curvature.
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Constitutive model

For a shell composed of N orthotropic layers, the stresses in layer k are related to 
strains through

             (4)

or in vector form by

                                               (5)

Fig. 1. Discrete layer shell element

where  are the transformed stiffness coefficients obtained from:

            (6)
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Bilinear shape functions

The proposed quadrilateral element has twenty degrees of freedom (dofs) with five 
dofs at each of the four corner nodes. The nodal dofs vector, δ

i
, and the layer dofs 

vector δ are defined as: 

                                         (7)

Hence, the displacement shape functions are bilinear in x and y, and described by

                                       (8)

Field consistent shape functions

It is very well known that shear deformable shell elements experience locking due to 
inconsistency of shape functions used to evaluate the strains. To clearly understand 
this issue, the discretized strain components will be analyzed for field inconsistency 
and consistent shape functions will be derived in a selective manner to enhance 
convergence and eliminate the excessive stiffening in the strain energy functional. 

Membrane longitudinal strain e
x
 

The discretized strain is found by substituting the shape functions in e
x
 so that

                   (9)

It can be easily seen that this strain component has no locking issues since the 
strain is defined only from the longitudinal displacement, u. Hence, the four elements 
of strain in the last equation are consistently made from coefficients of both uk and uk+1. 
Notice that upon thickness integration, the final form of the discretized longitudinal 
strain is basically a linear function in the y direction.  

Membrane tangential strain e
y
 

Substituting the shape functions in e
y
 given by
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    (10)

and integrating over the thickness, it can be readily shown that ∂v/∂y is a linear 
function of x. Therefore, the inconsistent terms are due to the y and xy terms (i.e. a

19
 

and a
20

), which are parts of the transverse displacement w. As a result, w is modified 
upon substitution in e

y
 to become 

                                                   (11)

Membrane shear strain g
xy

 

The discretized membrane shear strain is

        (12)

Upon thickness integration, ∂v/∂x becomes a linear function of y while ∂u/∂y 
becomes a linear function of x. The consistent terms between ∂v/∂x and ∂u/∂y are 
the constant ones, rendering the coefficients of x and y in the last equation as field 
inconsistent. This suggests that the field consistent membrane shear strain should be 
just a constant, which can be achieved by eliminating the bilinear term xy from all 
inplane displacement shape functions as follows

                                            (13)

Transverse shear strains g
xz
 and g

yz
  

The shear strain γ
xz
 is given, after substitution of the shape functions, by the 

following relationship

              (14)
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It can be seen that the constant term and the coefficient of y, both consist of 
components from w and u, while the coefficients of x and xy are made only of u 
components. Hence, in the Kirchhoff limits of vanishing shear strain, the constant 
coefficient and the coefficient of y are the true Kirchhoff constraints, while the other 
inconsistent coefficients of x and xy are spurious constraints from which the shear 
locking is generated. Hence, the consistent shear strain g

xz
 requires that the original 

shape functions of u are replaced by

                                                  (15)

By applying the field consistency procedure and integrating over the thickness, 
it can also be concluded that the field consistent g

yz
 is a linear function of x, which 

requires that the original shape functions of v are replaced by

                                                 (16)

Like most other techniques that try to overcome locking problems, the present 
field consistent technique is not variationally consistent. The variational consistency 
requires that the strain compatibility equations must be satisfied (Ausserer & Lee, 
1988) which is not a straight forward task for 2-D and 3-D shell structures. In fact, 
the present technique is always variationally correct if the strains are uncoupled. For 
example, the shear strains for isotropic materials and cross-ply orthotropic composites 
are always uncoupled, and hence the shear strain energy is always variationally 
correct under the present approach except for angle-ply composites. Even though the 
variational consistency is not totally satisfied, the proposed field consistent approach 
gives good results for angle-ply composites as will be shown later in the paper.  

Variational equations of motion

The extended Hamilton’s principle is used to derive the kinetic energy, T, potential 
energy, U, and work done, W, such that: 

                                          (17)

where the variational terms are defined by

                              (18)
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with f
i
  is defined as the i direction load applied on the surface S of the shell. Note 

that S and V are defined in the exact geometric sense were

                                             (19)

Minimizing the Hamilton’s principle for the discretized problem domain, the global 
dynamic equation of motion becomes

                                                   (20)

Where M and K are the mass and stiffness matrics, while F and  are the force and 
discplacement vectors, respectively. For harmonic motion, the eigenvalue problem is 
obtained by assuming , hence

                                                 (21)

while for static response, the mass matrix is omitted from the equation of motion 
resulting in

                                                        (22)

Numerical validation

In this section, the current shell discrete layer element is tested against existing standard 
shell finite elements via a set of static and dynamic problems. Two different elements 
will be used to evaluate the performance of the discrete layer shell element. The first 
element is the standard discrete layer shell element (SDLE) which implements all the 
modified shape functions. The second element (SDLEx) implements all the modified 
shape functions, except the shape functions of the membrane shear strain remain 
unchanged. In some examples, SDLE and SDLEx give almost typical results, and 
hence only SDLE is compared against other elements.

Pinched cylinder

The pinched cylinder is a well known benchmark for testing the ability of shell finite 
elements to model the state of inextensional bending. The cylinder is subjected to a 
unit point load p at the center on opposite sides of the cylinder, as shown in Figure 
2, and has rigid end diaphragms (v = w = 0). Since the problem is symmetric, only 
one octant of the cylinder is used. The geometric and material properties of the 
cylinder are

E = 3×106,    n = 0.3, r = 300, length = 600.
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The performance of the new element is compared to MITC4 (Dvorkin & Bathe, 
1984), the enhanced assumed strain element by Simo et al. (1989) and XSHELL41 by 
Kim et al. (2003)

Fig. 2. The pinched cylinder problem

Table 1. Convergence of the normalized deflection for the pinched cylinder problem

Mesh MITC4 Simo et al. XSHELL41 SDLE SDLEx

4×4 0.37 0.399 0.625 0.7179 0.6194

8×8 0.74 0.763 0.926 0.8896 0.8467

16×16 0.93 0.935 0.995 0.9713 0.9569

Fig. 3. Convergence of the radial displacement at the location of the load for the 
pinched cylinder problem

The reference value of the radial displacement at the location of the load is 1.8248 
×10-5. Both proposed elements have shown good convergence to the reference solution, 
with SDLE outperforming SDLEx.

Scordelis-Lo roof

The Scordelis-Lo roof, shown in Figure 4, is another standard benchmark for testing 
the ability of shell finite elements to model membrane dominated problems. The 
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cylindrical panel is subjected to its own gravitational load q (acting vertically down, 
not radially) and has rigid diaphragms at the curved edges (v = w = 0), with the other 
straight ends free. Only one quarter of the cylinder is used due to symmetry. The 
geometric and material properties of the panel are

E = 4.32×108,  n = 0.0, r = 25, θ = 40o, length = 50, q = − 90

The vertical displacement at the center of the free end, point A, is determined 
and the solution is compared against other shell elements as shown in Table 2. The 
reference value used here is 0.3024 (MacNeal & Harder, 1985), which is used by 
many finite element packages. The SDLEx shows poor convergence with respect to 
all other elements, while SDLE is showing competitive performance. It should be 
noted here that the SDLE converges to a value of 0.3080 which is very close to the 
theoretical solution value of 0.3086.

Table 2. Convergence of the normalized deflection for the Scordelis-Lo roof problem

Mesh MITC4 Simo et al. SDLE SDLEx

4×4 0.94 1.083 0.8857 0.3562

8×8 0.98 1.015 0.9820 0.6984

16×16 1.01 1.000 1.0091 0.9142

Fig. 4. Scordelis-Lo roof

Fig. 5. Convergence of the vertical displacement at point A of the Scordelis-Lo roof shell problem
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Bending of laminated composite cylindrical panel

This problem deals with a cross-ply laminated cylindrical panel that is simply supported 
at all its edges (i.e. v = w = 0 on curved edges and u = w = 0 on straight edges). The 
panel has a total angle of θ, mean radius r, length a, width b = rθ, thickness h and it is 
subjected to a sinusoidally distributed transverse load f

z
. The geometric and material 

properties of the composite panel are

E
1
 = 25E

2
, G

12
 = G

13
 = 0.5E

2
, G

23
 = 0.2E

2
, n

12
 = 0.25 

r = 1, θ = π/4 rad, a = 4, 
 

The non dimensional displacement, , is calculated at the center of 
the panel and compared with other existing results reported in Chang et al. (2000) and 
Reddy (2003), as shown in Table 3. The SDLE shows good comparable results with 
other references, with all the SDLE results higher than those of their counterparts. 
The highest discrepancy occurs for the smallest r/h and for an increasing number of 
laminated layer mismatch (90/0/90). This discrepancy might be due to the flexibility 
of the current discrete layer approach in comparison with the classical lamination 
approach of the other two references.

Vibrations of thin orthotropic circular cylindrical shells

This problem is concerned with the free vibrations of a thin orthotropic circular 
cylindrical shell. The circular shell is clamped from both sides and has the following 
geometric and material properties

E = 204×109, n = 0.29,       ρ = 7833, r = 0.0762, length = 0.3048, h = 0.0254

The modal frequencies in terms of the longitudinal mode m and circumferential 
mode n are compared with the exact characteristics solution of the thin shell (Liu et 
al., 2012) as shown in Table 4. While both elements give good results in general, the 
SDLEx gives slightly more accurate results for higher circumferential modes.

Vibrations of thin laminated composite circular cylindrical shell

A composite version of the previous example is validated here, where only the 
fundamental frequencies are calculated. The problem at hand is a clamped laminated 
composite circular shell with mean radius r, total thickness h (equally distributed on 
plies) and has the following geometric and material properties

E
1
 = 206.9, E

2
 = E

3
 = 18.62, G

23
 = G

23
 = G

23
 = 4.48, n

12
 = n

13
 = n

23 
= 0.28 

r = 0.1905, h = 0.000501, length = 0.381
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Both angle-ply and cross-ply laminated composite shells are used in this problem. 
The results of the present SDLE and SDLEx are compared in Table 5 with results 
from the classical shell theory (Sheinman & Greif, 1984) and a double superposition 
global-local theory (Shariyat, 2011). Both elements give good results within the range 
of both mentioned references.

Vibrations of moderately thick laminated composite circular 
cylindrical panels

The fundamental frequencies of moderately thick cross-ply laminated cylindrical 
panels are calculated in this example for different boundary conditions. The panels 
have both their straight edges simply supported (u = w = 0), while the curved edges 
are subjected to different sets of Free (F), Clamped (C) and Simply-Supported (S) 
conditions. The panel has a mean radius r, length a, width b, and total thickness h 
(equally distributed on plies).  The material properties of the composite panel are:

E
1
 = 25E

2
, G

12
 = G

13
 = 0.5E

2
, G

23
 = 0.2E

2
, 
 
n

12 
= 0.25, a/h = 10, a/b = 1.

The non dimensional fundamental frequency, , for the SDLE is 
compared with theoretical results by Messina & Soldatos (1999), referred as MS, and 
also by Khdeir & Reddy (1990), referred as KR,  as shown in Table 6. The SDLE 
shows good results with a maximum discrepancy of 9%. This maximum discrepancy 
occured for the smallest r/h, for an increasing number of laminated layer mismatch 
(90/0/90), and for the clamped boundary condition, which is the fully constrained 
condition. The SDLE underestimates the frequencies for constrained conditions and 
the underestimation increases as the degree of constraining increases. In other words, 
for relatively less constrained conditions, the discrepancy between the SDLE and the 
other references decreases. This discrepancy confirms that the discrete layer approach 
is more flexible than other common approaches.

Table 3. Displacements at the center of the laminated cross ply panel

90/0/90 0/90

r/h Cheng et al. Reddy SDLE Cheng et al. Reddy SDLE

50 0.5486 0.5458 0.5634 2.2372 2.2586 2.2874

100 0.4711 0.4718 0.4765 1.3666 1.3720 1.3815

500 0.1027 0.1028 0.1030 0.1005 0.1006 0.1008
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Table 4. Frequencies (Hz) of the present DLFE elements compared with exact results

m/n 1 2 3 4 5 6 7 8

1 SDLE 3424 1913 1149 758 576 540 610 750

SDLEx 3425 1916 1153 764 583 546 615 753

Exact 3425 1917 1154 764 580 538 598 723

2 SDLE 6413 3899 2527 1740 1274 1014 910 932

SDLEx 6415 3903 2535 1750 1288 1029 925 946

Exact 6412 3903 2537 1752 1287 1022 907 911

3 SDLE 8497 5840 4042 2901 2167 1696 1414 1286

SDLEx 8499 5845 4052 2916 2187 1720 1440 1312

Exact 8493 5841 4052 2920 2191 1720 1431 1287

4 SDLE 9426 7303 5437 4082 3136 2482 2041 1772

SDLEx 9427 7308 5448 4100 3161 2513 2077 1810

Exact 9420 7299 5444 4102 3167 2518 2077 1797

Table 5. Fundamental frequencies (Hz) of the clamped cylindrical laminated shells

Orientation Sheinman and Greif Shariyat SDLE SDLEx

0/0/0 261.3 266.31 260.36 261.34

15/0/15 316.0 321.74 315.54 318.34

30/0/30 376.8 381.15 376.48 384.58

45/0/45 420.0 425.62 421.22 430.93

60/0/60 424.3 433.34 425.10 431.81

75/0/75 395.0 401.83 394.82 398.15

90/0/90 370.5 374.87 369.69 370.36

15/0/-15 333.1 342.27 331.49 333.62

30/0/-30 362.2 371.85 366.95 370.38

45/0/-45 362.4 369.26 368.44 373.03

60/0/-60 379.7 384.95 383.52 387.20

75/0/-75 393.8 397.87 394.45 396.40
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Table 6. Fundamental frequencies (Hz) of the laminated composite panel

Orientation r/a SS SC CC FF FS FC

0/90 5 MS 8.987 13.860 13.095 5.741 6.056 6.557

KR 9.024 13.866 13.119 5.700 5.101 6.600

SDLE 9.031 12.800 12.655 5.779 6.113 6.608

20 MS 8.967 10.841 13.070 5.809 6.133 6.588

KR 8.973 10.871 12.070 5.800 6.139 6.594

SDLE 8.923 10.707 12.593 5.773 6.105 6.553

0/90/0 5 MS 11.839 13.860 16.023 3.767 4.298 6.114

KR 11.846 13.866 16.028 3.783 4.312 6.123

SDLE 11.213 12.800 14.583 3.757 4.281 5.950

20 MS 11.793 13.825 15.999 3.789 4.323 6.089

KR 11.793 13.825 15.999 3.789 4.322 6.089

SDLE 11.163 12.760 14.552 3.779 4.307 5.926

CONCLUSION

A discrete layer finite element is proposed in this paper to model thin and moderately 
thick cylindrical shells. The element has twenty degrees of freedom, five at each of 
the four corner nodes. A consistent field approach is implemented to eliminate the 
various locking phenomena due to membrane shear strain, in-plane tangential strain, 
and transverse shear strains. The field consistent strains are obtained by omitting the 
inconsistent terms from the original displacement shape functions. The element has 
been validated through standard benchmark tests with good convergence rate and 
accurate results. In addition to the field consistency of transverse shear and membrane 
tangential strains, faster converging results have been noticed, when the membrane 
shear strain is also field consistent, and more significantly for problems that include 
membrane loads like the famous Scordelis-Lo roof. As the number of mismatched 
laminated composite layers increase, the element produces higher displacements for the 
static bending analysis and lower natural frequencies for the free vibration analysis. In 
addition, the discrepancy increases by increasing the degree of boundary constraining. 
This confirms that the current shell discrete layer element has more flexibility than 
the other approaches due to the fact that the inplane displacement field is defined on 
the element interfaces, rather than the midsurface as done in the equivalent single 
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layer and layerwise theories. This suggests that the shell discrete layer theory under 
consideration should be analyzed and compared against other existing shell theories 
for additional understanding of the advantages and disadvantages of the discrete layer 
approach. 
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